Difference between revisions of "Dickman-function(2)"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <!-- | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
− | + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | |
− | + | was used. | |
− | + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | |
− | |||
− | |||
− | |||
− | |||
+ | Out of 2 formulas, 2 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
{{TEX|auto}} | {{TEX|auto}} | ||
{{TEX|done}} | {{TEX|done}} | ||
Line 14: | Line 13: | ||
$$ | $$ | ||
− | \rho ( u ) = 1 | + | \rho ( u ) = 1 \quad ( 0 \leq u \leq 1 ) , |
$$ | $$ | ||
$$ | $$ | ||
− | u \rho ^ \prime ( u ) = - \rho ( u - 1 ) | + | u \rho ^ \prime ( u ) = - \rho ( u - 1 ) \quad ( u > 1 ) . |
$$ | $$ | ||
Line 39: | Line 38: | ||
\frac{\xi ^ \prime ( u ) }{2 \pi } | \frac{\xi ^ \prime ( u ) }{2 \pi } | ||
} } \times | } } \times | ||
− | |||
− | |||
− | |||
− | |||
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { | { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { | ||
\frac{e ^ {s} - 1 }{s} | \frac{e ^ {s} - 1 }{s} | ||
− | } } {ds } \right \} | + | } } {ds } \right \} \quad ( u > 1 ) , |
$$ | $$ | ||
− | where | + | where $\gamma$ is the [[Euler constant]] and $\xi(u)$ |
− | is the [[ | + | is the unique positive solution of the equation $e^{\xi(u)} = 1 + u \xi(u)$. |
− | is the unique positive solution of the equation $ | ||
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" ''J. Reine Angew. Math.'' , '''335''' (1982) pp. 180–196</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54''' (1951) pp. 50–60</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" ''J. Indian Math. Soc. (N.S.)'' , '''15''' (1951) pp. 25–32</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" ''J. de Théorie des Nombres de Bordeaux'' , '''5''' (1993) pp. 411–484</td></tr> | ||
+ | </table> |
Latest revision as of 08:55, 10 November 2023
The unique continuous solution of the system
$$ \rho ( u ) = 1 \quad ( 0 \leq u \leq 1 ) , $$
$$ u \rho ^ \prime ( u ) = - \rho ( u - 1 ) \quad ( u > 1 ) . $$
The Dickman function $ \rho ( u ) $ occurs in the problem of estimating the number $ \Psi ( x,y ) $ of positive integers not exceeding $ x $ that are free of prime factors greater than $ y $: for any fixed $ u > 0 $, one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ as $ u \rightarrow \infty $[a2], [a4].
The function $ \rho ( u ) $ is positive, non-increasing and tends to zero at a rate faster than exponential as $ u \rightarrow \infty $. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:
$$ \rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} \quad ( u > 1 ) , $$
where $\gamma$ is the Euler constant and $\xi(u)$ is the unique positive solution of the equation $e^{\xi(u)} = 1 + u \xi(u)$.
References
[a1] | K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196 |
[a2] | N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" Nederl. Akad. Wetensch. Proc. Ser. A , 54 (1951) pp. 50–60 |
[a3] | N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32 |
[a4] | A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484 |
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=46649