Namespaces
Variants
Actions

Difference between revisions of "Conjugate directions"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
Line 31: Line 31:
 
are the coefficients of the second fundamental form of  $  S $
 
are the coefficients of the second fundamental form of  $  S $
 
evaluated at  $  P $.  
 
evaluated at  $  P $.  
Example: a [[Principal direction|principal direction]].
+
Example: a [[principal direction]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Pogorelov,  "Differential geometry" , Noordhoff  (1959)  (Translated from Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Pogorelov,  "Differential geometry" , Noordhoff  (1959)  (Translated from Russian)</TD></TR>
====Comments====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , '''1''' , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.C. Hsiung,  "A first course in differential geometry" , Wiley  (1981)  pp. Chapt. 3, Sect. 4</TD></TR>
 
+
</table>
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , '''1''' , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.C. Hsiung,  "A first course in differential geometry" , Wiley  (1981)  pp. Chapt. 3, Sect. 4</TD></TR></table>
 

Latest revision as of 06:12, 16 April 2023


A pair of directions emanating from a point $ P $ on a surface $ S $ such that the straight lines containing them are conjugate diameters of the Dupin indicatrix of $ S $ at $ P $. In order that the directions $ ( du : dv) $, $ ( \delta u : \delta v) $ at a point $ P $ on $ S $ be conjugate, it is necessary and sufficient that the following condition holds

$$ L du \delta u + M ( du \delta v + dv \delta u) + N dv \delta v = 0, $$

where $ L $, $ M $ and $ N $ are the coefficients of the second fundamental form of $ S $ evaluated at $ P $. Example: a principal direction.

References

[1] A.V. Pogorelov, "Differential geometry" , Noordhoff (1959) (Translated from Russian)
[a1] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , 1 , Springer (1973)
[a2] C.C. Hsiung, "A first course in differential geometry" , Wiley (1981) pp. Chapt. 3, Sect. 4
How to Cite This Entry:
Conjugate directions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_directions&oldid=46468
This article was adapted from an original article by E.V. Shikin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article