Difference between revisions of "Asymptotic invariant of a group"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(→References: zbl link) |
||
Line 29: | Line 29: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Ghys, "Les groupes hyperboliques" ''Astérisque'' , '''189–190''' (1990) pp. 203–238 (Sém. Bourbaki Exp. 722)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Gromov, "Hyperbolic groups" S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer (1987) pp. 75–263</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Gromov, "Asymptotic invariants of infinite groups" , ''Proc. Symp. Sussex, 1991: II'' , ''London Math. Soc. Lecture Notes'' , '''182''' , Cambridge Univ. Press (1993) pp. 1–291</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Ghys, "Les groupes hyperboliques" ''Astérisque'' , '''189–190''' (1990) pp. 203–238 (Sém. Bourbaki Exp. 722) {{ZBL|0744.20036}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Gromov, "Hyperbolic groups" S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer (1987) pp. 75–263</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Gromov, "Asymptotic invariants of infinite groups" , ''Proc. Symp. Sussex, 1991: II'' , ''London Math. Soc. Lecture Notes'' , '''182''' , Cambridge Univ. Press (1993) pp. 1–291</TD></TR> | ||
+ | </table> |
Latest revision as of 09:44, 14 April 2024
A property of a finitely-generated group $ G $
which is a quasi-isometry invariant of the metric space $ ( G,d _ {A} ) $,
where $ d _ {A} $
is the word metric associated to a finite generating set $ A $
of $ G $(
cf. also Quasi-isometric spaces). This definition does not depend on the choice of the set $ A $,
since if $ B $
is another finite set of generators of $ G $,
then the metric spaces $ ( G,d _ {A} ) $
and $ ( G,d _ {B} ) $
are quasi-isometric.
The theory of asymptotic invariants of finitely-generated groups has been recently brought to the foreground by M. Gromov (see, in particular, [a2] and [a3]). As Gromov says in [a3], p. 8, "one believes nowadays that the most essential invariants of an infinite group are asymptotic invariants" . For example, amenability (cf. Invariant average), hyperbolicity (in the sense of Gromov, cf. Hyperbolic group), the fact of being finitely presented (cf. Finitely-presented group), and the number of ends (cf. also Absolute) are all asymptotic invariants of finitely-generated groups. It is presently (1996) unknown whether the Kazhdan $ T $- property is an asymptotic invariant. For an excellent survey on these matters, see [a1].
A few examples of algebraic properties which are asymptotic invariants of finitely-generated groups are: being virtually nilpotent, being virtually Abelian, being virtually free.
References
[a1] | E. Ghys, "Les groupes hyperboliques" Astérisque , 189–190 (1990) pp. 203–238 (Sém. Bourbaki Exp. 722) Zbl 0744.20036 |
[a2] | M. Gromov, "Hyperbolic groups" S.M. Gersten (ed.) , Essays in Group Theory , MSRI Publ. , 8 , Springer (1987) pp. 75–263 |
[a3] | M. Gromov, "Asymptotic invariants of infinite groups" , Proc. Symp. Sussex, 1991: II , London Math. Soc. Lecture Notes , 182 , Cambridge Univ. Press (1993) pp. 1–291 |
Asymptotic invariant of a group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_invariant_of_a_group&oldid=45239