Difference between revisions of "User:Ulf Rehmann/Table of automatically generated TeX code"
Ulf Rehmann (talk | contribs)  (Corrections (Draft))  | 
				Ulf Rehmann (talk | contribs)  m (Ulf Rehmann moved page User:Ulf Rehmann/Table to User:Ulf Rehmann/Table of automatically generated TeX code)  | 
				||
| (47 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | {| class="wikitable  | + | This page gives an analysis of [[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|the code here]], [[User:Maximilian Janisch/latexlist|generated automatically from some png files underlying our old wiki pages]].  | 
| − | !| Nr.    | + | As this page does contain a lot of $\TeX$ code, it loads slowly.  | 
| − | !| Image of png File  | + | |
| − | !| $\TeX$,   | + | Under the name of some of our EoM-pages the table below lists some png files, displaying their image and their $TeX$ rendering (automatically retrieved and corrected by hand).  | 
| − | !| $\TeX$,   | + | The first column gives the running number in this table, followed (in parentheses) by the number used [[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E| here]].  | 
| − | !| Confidence, F?  | + | The last column gives the confidence and the name of the png file, followed (in parentheses) by the number it has in the sequence of all png files called by its calling EoM-page.  | 
| − | + | ||
| − | + | Here is a short survey of the more systematic errors which seem to occur:  | |
| − | + | ||
| + | ; 1. Trailing punctuation is dismissed.  | ||
| + | :[concerns almost all images] ; technically: pixels in sparse last pixel columns of bit images are suppressed/ignored?  | ||
| + | |||
| + | ; 2. "Displayed" images are not recognized as such.  | ||
| + | :[concerns almost all images]  | ||
| + | :Therefore these are displayed too small, and like "inline" $\TeX$ format.  | ||
| + | :  | ||
| + | :Remark: This cannot be discovered from the png file, it has to be retrieved from the html markup in the calling file: Displayed images are embedded in some html <table> markup.  | ||
| + | :  | ||
| + | ;3. Sparse initial column pixels of the bit image are dismissed  | ||
| + | :(in parts this affects essential symbols), [see nr. 15,16,36,43,58,59,60,61,62,63,97,109]  | ||
| + | |||
| + | ;4. Some fonts are not recognized:  | ||
| + | :\cal:    [7.12.25.26,30,31,32,33,95,111] \mathbf: [30,83,111,127]  \bf:[ 133,148,149]  | ||
| + | :  | ||
| + | ;5.  Semi-colon is interpreted as double pipe = "||" :[33,49,86,101]  | ||
| + | :  | ||
| + | ;6.  Some code is not displayed at all.  | ||
| + | :    (This seems to be  a bug of our MathJax TeX interpreter.) [67,74,78,81,83,94,101,106]  | ||
| + | :    This seems to happen when a string "\text {" is involved, can apparently be fixed by using "\text{", but still unclear.  | ||
| + | :  | ||
| + | ;7.  Questions:   | ||
| + | :    The different interpretation of the matrix delimiters in [56-63] is a bit surprising. Should be checked!  | ||
| + | :    Also, the vanishing of some '-' signs in the first column of some matrices, maybe that is related to 3.?  | ||
| + | |||
| + | ==[[Algebraic curve]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 1.(23.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145065.png || $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ ||   | + | | 1.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|23.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145065.png    | ||
| + | || $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$    | ||
| + | ||$$g\leq \left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {\frac {(n-2)^2}4}	&{\text{ for even }n,}\\  | ||
| + |  {\frac {(n-1)(n-3)}4}	&{\text{ for odd }n,}  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.698  | ||
| − | + | a01145065.png (65)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Algebraic geometry]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 2.(116.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150014.png || $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ||   | + | | 2.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|116.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150014.png    | ||
| + | || $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$    | ||
| + | ||$$\theta =\int\limits _ 0^{\lambda }\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$  | ||
| + | || conf 0.997  | ||
| − | + | a01150014.png (14)  | |
|-  | |-  | ||
| − | | 3.(133.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150021.png || $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ ||   | + | | 3.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|133.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150021.png    | ||
| + | || $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$    | ||
| + | ||$$\omega =2\int\limits _ 0^{1/c}\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$  | ||
| + | || conf 0.973  | ||
| − | + | a01150021.png (21)  | |
|-  | |-  | ||
| − | | 4.(67.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150022.png || $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ || $$\widetilde  | + | | 4.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|67.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150022.png    | ||
| + | || $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$    | ||
| + | ||$$\widetilde w=2\int\limits _ 0^{1/\varepsilon }\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$  | ||
| + | || conf 0.107    | ||
| − | + | a01150022.png (22)  | |
|-  | |-  | ||
| − | | 5.(105.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150044.png || $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ ||   | + | | 5.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|105.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150044.png    | ||
| + | || $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$    | ||
| + | ||$$\theta (v+\pi i r )=\theta (r),\quad \theta (v+\alpha _ j)=e^{L_j(v)}\theta (v),$$  | ||
| + | || conf 0.775  | ||
| − | + | a01150044.png (44)  | |
|-  | |-  | ||
| − | | 6.(17.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150078.png || $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ ||   | + | | 6.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|17.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150078.png    | ||
| + | || $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$    | ||
| + | ||$$\left(  | ||
| + | \begin {array}{ll}  | ||
| + |  {\alpha }	&b\\  | ||
| + |  c	&d  | ||
| + | \end {array}  | ||
| + | \right)\equiv \left(  | ||
| + | \begin {array}{ll}  | ||
| + | 1&0\\  | ||
| + | 0&1  | ||
| + | \end {array}  | ||
| + | \right)(\operatorname {mod}7).$$  | ||
| + | || conf 0.440  | ||
| − | + | a01150078.png (78)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Algebraic surface]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 7.(144.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png || $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ || $$0 \rightarrow {\cal O}   | + | | 7.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|144.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png    | ||
| + | || $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$    | ||
| + | ||$$0\rightarrow {\cal O}_V\rightarrow E _ {\alpha }\rightarrow T _ V\rightarrow 0$$  | ||
| + | || conf 0.981  | ||
| − | + | a011640132.png (132)  | |
|-  | |-  | ||
| − | | 8.(73.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640137.png || $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ ||   | + | | 8.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|73.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640137.png    | ||
| + | || $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$    | ||
| + | ||$$M=\operatorname {dim}\operatorname {Im}(H^1(V,E_{\alpha })\rightarrow H ^1(V,T_V)).$$  | ||
| + | || conf 0.997  | ||
| − | + | a011640137.png (137)  | |
|-  | |-  | ||
| − | | 9.(88.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640139.png || $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ ||   | + | | 9.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|88.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640139.png    | ||
| + | || $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$    | ||
| + | ||$$\operatorname {dim}_kH^2(V,E_{\alpha })+\operatorname {dim}_kH^2(V,T_V).$$  | ||
| + | || conf 0.996  | ||
| − | + | a011640139.png (139)  | |
|-  | |-  | ||
| − | | 10.(117.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164027.png || $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ ||   | + | | 10.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|117.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164027.png    | ||
| + | || $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$    | ||
| + | ||$$N_m=\left(\begin {array}c{m+3}\\  | ||
| + |  3  | ||
| + | \end {array}  | ||
| + | \right)-dm+2t+\tau +p-1.$$  | ||
| + | || conf 0.369  | ||
| − | + | a01164027.png (27)  | |
|-  | |-  | ||
| − | | 11.(72.) ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164029.png || $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ ||   | + | | 11.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|72.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164029.png    | ||
| + | || $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$    | ||
| + | ||$$p_{\alpha }(V)=\left(\begin {array}c{n-1}\\  | ||
| + |  3  | ||
| + | \end {array}  | ||
| + | \right)-d(n-1)+2t+\tau +p-1$$  | ||
| + | || conf 0.396  | ||
| − | + | a01164029.png (29)  | |
|-  | |-  | ||
| − | | 12.(68.)*||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164047.png || $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ ||   | + | | 12.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|68.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164047.png    | ||
| + | || $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$    | ||
| + | ||$$p_{\alpha }(V)=-\operatorname {dim}_kH_1(V,{\cal O}_V)+\operatorname {dim}_kH^2(V,{\cal O}_V)=$$  | ||
| + | || conf 0.756  F    | ||
| − | + | a01164047.png (47)  | |
|-  | |-  | ||
| − | | 13.(93.)*||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164053.png || $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ ||   | + | | 13.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|93.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164053.png    | ||
| + | || $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$    | ||
| + | ||$$1+p_{\alpha }(V)=\frac {\operatorname {deg}(c_1^2)+\operatorname {deg}(c_2)}{12},$$  | ||
| + | || conf 0.752  F    | ||
| − | + | a01164053.png (53)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Cartan subalgebra]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 14.(33.)*||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c0205509.png || $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ ||   | + | | 14.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|33.]])*  | 
| − | + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c0205509.png    | |
| − | + | || $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$    | |
| + | ||$$\mathfrak g_0=\big\{X\in \mathfrak g:\forall H \in \mathfrak t\exists n_{X,H}\in {\mathbb Z}((\text{ ad }H)^{n_{X,H}}(X)=0)\big\},$$  | ||
| + | || conf 0.110  F    | ||
| + | |||
| + | c0205509.png (9)  | ||
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Cartan theorem]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 15.(49.)*||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c0205704.png || $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ ||   | + | | 15.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|49.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c0205704.png    | ||
| + | || $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$    | ||
| + | ||$$[e_i,f_j]=\delta _ {ij}h_i,\quad [h_i,e_j]=\alpha _ {ij}e_j,\quad [h_i,f_j]=-\alpha _ {ij}f_j,$$  | ||
| + | || conf 0.149  F    | ||
| − | + | c0205704.png (4)  | |
|-  | |-  | ||
| − | | 16.(55.)*||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057064.png || $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ ||   | + | | 16.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|55.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057064.png    | ||
| + | || $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$    | ||
| + | ||$$\dots \rightarrow H ^p(X,S)\rightarrow H ^p(X,F)\stackrel {\phi_p }{\rightarrow }H^p(X,G)\rightarrow $$  | ||
| + | || conf 0.853  F    | ||
| − | + | c02057064.png (64)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Comitant]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 17.(7.) ||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333033.png || $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ ||   | + | | 17.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|7.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333033.png    | ||
| + | || $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$    | ||
| + | ||$$H=\frac 1{36}\left|  | ||
| + | \begin {array}{cc}  | ||
| + |  {\frac {\partial ^2f}{\partial x ^2}}	&{\frac {\partial ^2f}{\partial x \partial y }}\\  | ||
| + |  {\frac {\partial ^2f}{\partial x \partial y }}	&{\frac {\partial ^2f}{\partial y ^2}}  | ||
| + | \end {array}  | ||
| + | \right|=$$  | ||
| + | || conf 0.956  | ||
| − | + | c02333033.png (33)  | |
|-  | |-  | ||
| − | | 18.(76.) ||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333034.png || $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ ||   | + | | 18.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|76.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333034.png    | ||
| + | || $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$    | ||
| + | ||$$=(a_0a_2-a_1^2)x^2+(a_0a_3-a_1a_2)xy+(a_1a_3-a_2^2)y^2$$  | ||
| + | || conf 0.549  | ||
| − | + | c02333034.png (34)  | |
|-  | |-  | ||
| − | | 19.(11.)*||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333035.png || $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ ||   | + | | 19.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|11.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333035.png    | ||
| + | || $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$    | ||
| + | ||$$(\alpha _ 0,\alpha _ 1,\alpha _ 2,\alpha _ 3)\mapsto (\alpha _ 0\alpha _ 2-\alpha _ 1^2,\frac 12(\alpha _ 0\alpha _ 3-\alpha _ 1\alpha _ 2),\alpha _ 1\alpha _ 3-\alpha _ 2^2)$$  | ||
| + | || conf 0.521  F    | ||
| − | + | c02333035.png (35)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Deformation]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 20.(26.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700175.png || $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ ||   | + | | 20.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|26.]])    | 
| − | + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700175.png    | |
| − | + | || $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$    | |
| + | ||$$\operatorname {Aut}_{R^{\prime }}(X^{\prime }|X_0)\rightarrow \operatorname {Aut}_R(X_{R^{\prime }}^{\prime }\otimes R |X_0)$$  | ||
| + | || conf 0.683  | ||
| + |   \  | ||
| + | d030700175.png (175)  | ||
|-  | |-  | ||
| − | | 21.(27.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700190.png || $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ||   | + | | 21.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|27.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700190.png    | ||
| + | || $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$    | ||
| + | ||$$\operatorname {dim}_kH^1(X_0,T_{X_0})-\operatorname {dim}M_{X_0}\leq \operatorname {dim}_kH^2(X_0,T_{X_0}).$$  | ||
| + | || conf 0.944  | ||
| − | + | d030700190.png (190)  | |
|-  | |-  | ||
| − | | 22.(78.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700263.png || $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ ||   | + | | 22.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|78.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700263.png    | ||
| + | || $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$    | ||
| + | ||$$\alpha \circ b =\alpha b +\sum _ {i=1}^{\infty }\phi _ i(\alpha ,b)t^i,\quad \alpha ,b\in V,$$  | ||
| + | || conf 0.097  F    | ||
| − | + | d030700263.png (263)  | |
|-  | |-  | ||
| − | | 23.(96.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700270.png || $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ||   | + | | 23.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|96.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700270.png    | ||
| + | || $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$    | ||
| + | ||$$\Phi (\alpha )=\alpha +\sum _ {i=1}^{\infty }t^i\phi _ i(\alpha ),\quad \alpha \in V,$$  | ||
| + | || conf 0.873  F    | ||
| − | + | d030700270.png (270)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Differential algebra]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 24.(106.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830107.png || $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ ||   | + | | 24.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|106.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830107.png    | ||
| + | || $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$    | ||
| + | ||$$S^tF=\sum _ {j=1}^rc_jA^{p_j}A_1^{i_{1j}}\dots A _ {m-l}^{i_{{m-l},j}},$$  | ||
| + | || conf 0.149  | ||
| − | + | d031830107.png (107)  | |
|-  | |-  | ||
| − | | 25.(146.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830141.png || $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ ||   | + | | 25.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|146.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830141.png    | ||
| + | || $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$    | ||
| + | ||$(\eta _ 1,\ldots ,\eta _ k)\rightarrow {}_{\cal F}(\zeta _ 1,\ldots ,\zeta _ k)$  | ||
| + | || conf 0.562  F    | ||
| − | + | d031830141.png (141)  | |
|-  | |-  | ||
| − | | 26.(145.)$^F$*||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830150.png || $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ ||   | + | | 26.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|145.]])$^F$*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830150.png    | ||
| + | || $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$    | ||
| + | ||$(\eta _ 1,\ldots ,\eta _ n)\rightarrow {}_{\cal F}(\zeta _ 1,\ldots ,\zeta _ n)$  | ||
| + | || conf 0.376  F    | ||
| − | + | d031830150.png (150)  | |
|-  | |-  | ||
| − | | 27.(57.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183016.png || $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ||   | + | | 27.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|57.]])    | 
| + | |||
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183016.png    | ||
| + | |||
| + | || $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$    | ||
| + | |||
| + | ||$$\omega _ V=\sum _ {0\leq i \leq m }\alpha _ i\left(  | ||
| + | \begin {array}c{x+i}\\  | ||
| + |  i  | ||
| + | \end {array}  | ||
| + | \right),$$  | ||
| + | || conf 0.780  | ||
| − | + | d03183016.png (16)  | |
|-  | |-  | ||
| − | | 28.(111.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183043.png || $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ ||   | + | | 28.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|111.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183043.png    | ||
| + | || $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$    | ||
| + | ||$$e_{ij}=\operatorname {ord}_{Y_j}F_i,\quad 1 \leq i \leq n ,\quad i \leq j \leq n,$$  | ||
| + | || conf 0.187    | ||
| − | + | d03183043.png (43)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Dimension polynomial]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 29.(48.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249029.png || $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ ||   | + | | 29.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|48.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249029.png    | ||
| + | || $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$    | ||
| + | ||$$\omega _ {\eta /F}(x)=\sum _ {0\leq i \leq m }\alpha _ i\left(\begin {array}c{x+i}\\  | ||
| + |  i  | ||
| + | \end {array}  | ||
| + | \right),$$  | ||
| + | || conf 0.968  | ||
| − | + | d03249029.png (29)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Duality]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 30.(118.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120173.png || $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ ||   | + | | 30.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|118.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120173.png    | ||
| + | || $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$    | ||
| + | ||$$H^p(X,{\cal F})\times H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega ))\rightarrow {\mathbf C},$$  | ||
| + | || conf 0.824  F    | ||
| − | + | d034120173.png (173)  | |
|-  | |-  | ||
| − | | 31.(59.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120175.png || $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ ||   | + | | 31.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|59.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120175.png    | ||
| + | || $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$    | ||
| + | ||$$H^p(X,{\cal F})\times H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega ))\rightarrow H _ c^n(X,\Omega )$$  | ||
| + | || conf 0.921  F    | ||
| − | + | d034120175.png (175)  | |
|-  | |-  | ||
| − | | 32.(124.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120184.png || $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ ||   | + | | 32.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|124.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120184.png    | ||
| + | || $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$    | ||
| + | ||$$(H^p(X,{\cal F}))^{\prime }\cong H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega )).$$  | ||
| + | || conf 0.829  F    | ||
| − | + | d034120184.png (184)  | |
|-  | |-  | ||
| − | | 33.(29.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120236.png || $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X  F  , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y || F , \Omega )$ ||   | + | | 33.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|29.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120236.png    | ||
| + | || $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X  F  , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y    | ||
| + | || F , \Omega )$    | ||
| + | ||$$\beta :\operatorname {Ext}_c^{n-p-1}(X;{\cal F},\Omega )\rightarrow \operatorname {Ext}_c^{n-p-1}(X\backslash Y ;{\cal F},\Omega ).$$  | ||
| + | || conf 0.634    | ||
| + | || F  | ||
| − | + | d034120236.png (236)  | |
|-  | |-  | ||
| − | | 34.(77.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120247.png || $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ ||   | + | | 34.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|77.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120247.png    | ||
| + | || $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$    | ||
| + | ||$$\underset {n\rightarrow \infty }{\overline {\lim }}|\alpha _ n|^{1/n}=\sigma <+\infty.$$  | ||
| + | || conf 0.521  F    | ||
| − | + | d034120247.png (247)  | |
|-  | |-  | ||
| − | | 35.(58.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120253.png || $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ ||   | + | | 35.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|58.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120253.png    | ||
| + | || $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$    | ||
| + | ||$$h(\phi )=\underset {n\rightarrow \infty }{\overline {\lim }}\frac {\operatorname {ln}|A(re^{i\phi })|}r$$  | ||
| + | || conf 0.861  F    | ||
| − | + | d034120253.png (253)  | |
|-  | |-  | ||
| − | | 36.(69.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120360.png || $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ ||   | + | | 36.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|69.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120360.png    | ||
| + | || $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$    | ||
| + | ||$$\operatorname*{sup}_{l\in E^\perp \atop \|l\|\le 1 }|l(\omega )|=\operatorname*{inf}_{x\in E }\|\omega -x\|,$$  | ||
| + | || conf 0.293   F    | ||
| − | + | d034120360.png (360)  | |
|-  | |-  | ||
| − | | 37.(15.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120376.png || $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ ||   | + | | 37.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|15.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120376.png    | ||
| + | || $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$    | ||
| + | ||$$\operatorname*{sup}_{f\in B ^1}\big|\int\limits _ {\partial G }f(\zeta )\omega (\zeta )d\zeta \big|=\operatorname*{inf}_{\phi \in E ^1}\int\limits _ {\partial G }|\omega (\zeta )-\phi (\zeta )  | ||
| + | ||d\zeta |.$$  | ||
| + | || conf 0.508  | ||
| − | + | d034120376.png (376)  | |
|-  | |-  | ||
| − | | 38.(52.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120509.png || $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ ||   | + | | 38.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|52.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120509.png    | ||
| + | || $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$    | ||
| + | ||$$f=\{f_{\alpha }\}\in \prod _ {\alpha }F_{\alpha },\quad g =\{g_{\alpha }\}\in \operatorname*\oplus _ {\alpha }G_{\alpha }.$$  | ||
| + | || conf 0.491  | ||
| − | + | d034120509.png (509)  | |
|-  | |-  | ||
| − | | 39.(140.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120535.png || $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ ||   | + | | 39.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|140.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120535.png    | ||
| + | || $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$    | ||
| + | ||$$f^{*}(x^{*})=\operatorname*{sup}_{x\in X }(\langle x ^{*},x\rangle -f(x))$$  | ||
| + | || conf 0.900  | ||
| − | + | d034120535.png (535)  | |
|-  | |-  | ||
| − | | 40.(94.) ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120555.png || $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ ||   | + | | 40.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|94.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120555.png    | ||
| + | || $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$    | ||
| + | ||$$f_0(x)\rightarrow \text{ inf, }\quad f _ i(x)\leq 0 ,\quad i =1,\ldots ,m,\quad x \in B,$$  | ||
| + | || conf 0.810  | ||
| − | + | d034120555.png (555)  | |
|-  | |-  | ||
| − | | 41.(74.)*||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412079.png || $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ ||   | + | | 41.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|74.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412079.png    | ||
| + | || $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$    | ||
| + | ||$$(c_{\gamma },c^r)=\sum _ {t^r\in K }c_r(t^{\prime })c^r(t^r)\operatorname {mod}1$$  | ||
| + | || conf 0.117  F    | ||
| − | + | d03412079.png (79)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Extension of a differential field]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?   | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 42.(63.) ||  https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696024.png || $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ ||   | + | | 42.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|63.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696024.png    | ||
| + | || $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$    | ||
| + | ||$$F_1F_2=F_1\langle F _ 2\rangle =F_1(F_2)=F_2(F_1)=F_2\langle F _ 1\rangle,$$  | ||
| + | || conf 0.628  | ||
| − | + | e03696024.png (24)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Formal group]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 43.(120.)*||  https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820118.png || $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ ||   | + | | 43.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|120.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820118.png    | ||
| + | || $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$    | ||
| + | ||$$\operatorname {log}F_{\rm MU }(X)=\sum _ {i=1}^{\infty }i^{-1}[{\rm CP}^{i-1}]X^i,$$  | ||
| + | || conf 0.098  F    | ||
| − | + | f040820118.png (118)  | |
|-  | |-  | ||
| − | | 44.(147.)*||  https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082059.png || $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ ||   | + | | 44.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|147.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082059.png    | ||
| + | || $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$    | ||
| + | ||$$(x_1,\ldots ,x_n)\circ (y_1,\ldots ,y_n)=(z_1,\ldots ,z_n),$$  | ||
| + | || conf 0.553  F    | ||
| − | + | f04082059.png (59)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Gel'fond-Schneider method]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 45.(148.) ||  https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png || $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ||   | + | | 45.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|148.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png    | ||
| + | || $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$    | ||
| + | ||$\alpha ^{\beta }=\operatorname {exp}\{\beta \operatorname {log}\alpha \}$  | ||
| + | || conf 0.979  | ||
| − | + | g1300205.png (5)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Group]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 46.(22.)*||  https://www.encyclopediaofmath.org/legacyimages/g/g045/g045210/g04521075.png || $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ ||   | + | | 46.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|22.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/g/g045/g045210/g04521075.png    | ||
| + | || $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$    | ||
| + | | style="text-align:center;"| source incomplete  | ||
| + | || conf 0.226  F    | ||
| − | + | g04521075.png (75)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Homogeneous space]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 47.(89.) ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769069.png || $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ ||   | + | | 47.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|89.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769069.png    | ||
| + | || $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$    | ||
| + | ||$$\mathfrak g=\mathfrak f+\mathfrak m,\quad \mathfrak f\cap \mathfrak m=\{0\},$$  | ||
| + | || conf 0.793  | ||
| − | + | h04769069.png (69)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Hopf algebra]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 48.(103.) ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970129.png || $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ ||   | + | | 48.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|103.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970129.png    | ||
| + | || $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$    | ||
| + | ||$m\circ (\iota \otimes 1 )\circ \mu =m\circ (1\otimes \iota )\circ \mu =e\circ \epsilon$  | ||
| + | || conf 0.618  | ||
| − | + | h047970129.png (129)  | |
|-  | |-  | ||
| − | | 49.(107.)*||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970139.png || $F _ { 1 } ( X || Y ) , \ldots , F _ { n } ( X || Y ) \in K [ X _ { 1 } , \ldots , X _ { n } || Y _ { 1 } , \ldots , Y _ { n } ] \}$ ||   | + | | 49.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|107.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970139.png    | ||
| + | || $F _ { 1 } ( X    | ||
| + | || Y ) , \ldots , F _ { n } ( X    | ||
| + | || Y ) \in K [ X _ { 1 } , \ldots , X _ { n }    | ||
| + | || Y _ { 1 } , \ldots , Y _ { n } ] \}$    | ||
| + | ||$F_1(X;Y),\ldots ,F_n(X;Y)\in K [X_1,\ldots ,X_n;Y_1,\ldots ,Y_n]\}$  | ||
| + | || conf 0.353  F    | ||
| − | + | h047970139.png (139)  | |
|-  | |-  | ||
| − | | 50.(97.) ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797042.png || $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ ||   | + | | 50.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|97.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797042.png    | ||
| + | || $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$    | ||
| + | ||$$\epsilon (x)=0,\quad \delta (x)=x\otimes 1 +1\otimes x ,\quad x \in \mathfrak g.$$  | ||
| + | || conf 0.213  | ||
| − | + | h04797042.png (42)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Invariants, theory of]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 51.(149.)*||  https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235015.png || $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ ||   | + | | 51.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|149.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235015.png    | ||
| + | || $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$    | ||
| + | ||$$\alpha _ {i_1,\dots,i_n}\rightarrow \alpha _ {i_1,\dots,i_n}^{\prime }.$$  | ||
| + | || conf 0.142  F    | ||
| − | + | i05235015.png (15)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Jordan algebra]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 52.(150.) ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427030.png || $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ ||   | + | | 52.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|150.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427030.png    | ||
| + | || $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$    | ||
| + | ||$$(C_3,\Gamma )=\big\{X\in C _ 3:X=\Gamma ^{-1}X\square ^{\prime }\Gamma \big\},$$  | ||
| + | || conf 0.651  | ||
| − | + | j05427030.png (30)  | |
|-  | |-  | ||
| − | | 53.(42.) ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427031.png || $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ ||   | + | | 53.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|42.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427031.png    | ||
| + | || $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$    | ||
| + | ||$$\Gamma =\operatorname {diag}\{\gamma _ 1,\gamma _ 2,\gamma _ 3\},\quad \gamma _ i\neq 0 ,\quad \gamma _ i\in F,$$  | ||
| + | || conf 0.987    | ||
| − | + | j05427031.png (31)  | |
|-  | |-  | ||
| − | | 54.(125.)*||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427077.png || $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ ||   | + | | 54.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|125.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427077.png    | ||
| + | || $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$    | ||
| + | ||$\mathfrak g=\mathfrak g_{-1}+\mathfrak g_0+\mathfrak g_1$  | ||
| + | || conf 0.598  F    | ||
| − | + | j05427077.png (77)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Jordan matrix]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 55.(6.)*||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png || $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ||   | + | | 55.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|6.]])*  | 
| − |   J_{n_1}(\lambda_1)   | + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png    | 
| − | + | || $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$    | |
| − | + | ||$$J=\left\|  | |
| − | + | \begin {array}{cccc}  | |
| − | + | ||
| + |   J_{n_1}(\lambda_1)	&0	&0	&0\\  | ||
| + | |||
| + |  0	&\ddots 	&\ddots 	&0\\  | ||
| + | |||
| + |  0	&\ddots 	&\ddots 	&0\\  | ||
| + | |||
| + |  0	&0	&0	&J_{n_s}(\lambda_s)  | ||
| − | + | \end {array}  | |
| + | \right\|,$$  | ||
| + | || conf 0.072  F   | ||
| + | |||
| + | j0543403.png (3)  | ||
|-  | |-  | ||
| − | | 56.(64.) ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j05434030.png || $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ ||   | + | | 56.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|64.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j05434030.png    | ||
| + | || $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$    | ||
| + | ||$$C_m(\lambda )=\operatorname {rk}(A-\lambda E )^{m-1}-2\operatorname {rk}(A-\lambda E )^m+$$  | ||
| + | || conf 0.955  | ||
| − | + | j05434030.png (30)  | |
|-  | |-  | ||
| − | | 57.(1.)*||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543406.png || $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ || $$J_m(\lambda) = \left\| \begin{array} {   | + | | 57.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|1.]])*  | 
| − | + | ||  https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543406.png    | |
| − | + | || $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$    | |
| − | + | ||$$J_m(\lambda)=\left\|  | |
| − | + | \begin {array}{cccccc}  | |
| − | |||
| − | |||
| − | |||
| − | + |  \lambda 	&1	&\square 	&\square 	&\square 	&\square \\  | |
| + | |||
| + |  \square 	&\lambda 	&1	&\square 	&0	&\square \\  | ||
| + | |||
| + |  \square 	&\square 	&\ddots 	&\ddots 	&\square 	&\square\\  | ||
| + | |||
| + |  \square 	&\square 	&\square 	&\ddots 	&\ddots 	&\square \\  | ||
| + | |||
| + |  \square 	&0	&\square 	&\square 	&\lambda 	&1\\  | ||
| + | |||
| + |  \square 	&\square 	&\square 	&\square 	&\square 	&\lambda   | ||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.098  F   | ||
| + | |||
| + | j0543406.png (6)  | ||
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Lie algebra, semi-simple]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 58.(5.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510127.png || $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ || $$B_n: \quad \left\| \begin{array} {   | + | | 58.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|5.]])    | 
| − | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510127.png    | |
| − | { - 1 } &   | + | || $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$    | 
| − | + | ||$$B_n:\quad \left\|  | |
| − |   \cdot   | + | \begin {array}{rrrrrr}  | 
| − | + | ||
| − | + |  2	&{-1}	&0	&{\dots }	&0	&0\\  | |
| − | + | ||
| − | + |  {-1}	&2	&{-1}	&{\dots }	&0	&0\\  | |
| + | |||
| + |  0	&{-1}	&2	&{\dots }	&0	&0\\  | ||
| + | |||
| + |   \cdot 	&\cdot 	&\cdot 	&\dots 	&\cdot 	&\cdot \\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&{-1}	&0\\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&2	&{-2}\\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&{-1}	&2  | ||
| − | + | \end {array}  | |
| + | \right\|,$$  | ||
| + | || conf 0.232  | ||
| + | |||
| + | l058510127.png (127)  | ||
|-  | |-  | ||
| − | | 59.(3.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510129.png || $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ ||   | + | | 59.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|3.]])*  | 
| − | \left\| \begin{array} {   | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510129.png    | 
| − | + | || $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$    | |
| − | { - 1 } &   | + | ||$$D_n:\quad \left\|  | 
| − | + | \begin {array}{rrrrrrr}  | |
| − | \cdot   | + | |
| − | + |  2	&{-1}	&0	&{\dots }	&0	&0	&0	&0\\  | |
| − | + | ||
| − | + |  {-1}	&2	&{-1}	&{\dots }	&0	&0	&0	&0\\  | |
| − | + | ||
| − | \end{array} \right\|,$$ || conf 0.055  F    | + |  0	&{-1}	&2	&{\dots }	&0	&0	&0	&0\\  | 
| + | |||
| + |  \cdot 	&\cdot 	&\cdot 	&\dots 	&\cdot 	&\cdot 	&\cdot 	&\cdot \\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&2	&{-1}	&0	&0\\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&{-1}	&2	&{-1}	&{-1}\\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&0	&{-1}	&2	&0\\  | ||
| + | |||
| + |  0	&0	&0	&{\dots }	&0	&{-1}	&0	&2  | ||
| + | |||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.055  F    | ||
| − | + | l058510129.png (129)  | |
|-  | |-  | ||
| − | | 60.(8.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510130.png || $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ || $$E_6:    | + | | 60.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|8.]])*  | 
| − | \quad \left\| \begin{array} {   | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510130.png    | 
| − | + | || $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$    | |
| − | + | ||$$E_6:  | |
| − | { - 1 } &   | + | \quad \left\|  | 
| − | + | \begin {array}{rrrrrr}  | |
| − | + | ||
| − | + |  2	&0	&{-1}	&0	&0	&0\\  | |
| − | \end{array} \right\|,$$ || conf 0.628  F  | + | |
| + |  0	&2	&0	&{-1}	&0	&0\\  | ||
| + | |||
| + |  {-1}	&0	&2	&{-1}	&0	&0\\  | ||
| + | |||
| + |  0	&{-1}	&{-1}	&2	&{-1}	&0\\  | ||
| + | |||
| + |  0	&0	&0	&{-1}	&2	&{-1}\\  | ||
| + | |||
| + |  0	&0	&0	&0	&{-1}	&2  | ||
| + | |||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.628  F  | ||
| − | + | l058510130.png (130)  | |
|-  | |-  | ||
| − | | 61.(4.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510131.png || $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ || $$E_7: \quad    | + | | 61.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|4.]])    | 
| − | \left\| \begin{array} {   | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510131.png    | 
| − | + | || $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$    | |
| − | + | ||$$E_7:\quad \left\|  | |
| − | {-1 } &   | + | \begin {array}{rrrrrrr}  | 
| − | + | ||
| − | + |  2	&0	&{-1}	&0	&0	&0	&0\\  | |
| − | + | ||
| − | + |  0	&2	&0	&{-1}	&0	&0	&0\\  | |
| − | + | ||
| + |  {-1}	&0	&2	&{-1}	&0	&0	&0\\  | ||
| + | |||
| + |  0	&{-1}	&{-1}	&2	&{-1}	&0	&0\\  | ||
| − | + |  0	&0	&0	&{-1}	&2	&{-1}	&0\\  | |
| + | |||
| + |  0	&0	&0	&0	&{-1}	&2	&{-1}\\  | ||
| + | |||
| + |  0	&0	&0	&0	&0	&{-1}	&2  | ||
| + | |||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.278  | ||
| + | |||
| + | l058510131.png (131)  | ||
|-  | |-  | ||
| − | | 62.(2.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510132.png || $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ || $$E_8: \quad    | + | | 62.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|2.]])*  | 
| − | \left\| \begin{array} {   | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510132.png    | 
| − | + | || $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$    | |
| − | + | ||$$E_8:\quad \left\|  | |
| − | {-1 } &   | + | \begin {array}{rrrrrrrr}  | 
| − | + | ||
| − | + |  2	&0	&{-1}	&0	&0	&0	&0	&  | |
| − | + |  0\\  | |
| − | + |  0	&2	&0	&{-1}	&0	&0	&0	&0\\  | |
| − | + | ||
| − | \end{array} \right\|,$$ || conf 0.354  F    | + |  {-1}	&0	&2	&{-1}	&0	&0	&0	&0\\  | 
| + | |||
| + |  0	&{-1}	&{-1}	&2	&{-1}	&0	&0	&0\\  | ||
| + | |||
| + |  0	&0	&0	&{-1}	&2	&{-1}	&0	&0\\  | ||
| + | |||
| + |  0	&0	&0	&0	&{-1}	&2	&{-1}	&0\\  | ||
| + | |||
| + |  0	&0	&0	&0	&0	&{-1}	&2	&{-1}\\  | ||
| + | |||
| + |  0	&0	&0	&0	&0	&0	&{-1}	&2  | ||
| + | |||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.354  F    | ||
| − | + | l058510132.png (132)  | |
|-  | |-  | ||
| − | | 63.(10.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510133.png || $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$    | + | | 63.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|10.]])*  | 
| − | || $$F_4: \quad \left\| \begin{array} {   | + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510133.png    | 
| + | || $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$    | ||
| + | |||
| + | ||$$F_4:\quad \left\|  | ||
| + | \begin {array}{rrrr}  | ||
| + |  2	&{-1}	&0	&0\\  | ||
| + |  {-1}	&2	&{-2}	&0\\  | ||
| + |  0	&{-1}	&2	&{-1}\\  | ||
| + |  0	&0	&{-1}	&2  | ||
| + | \end {array}  | ||
| + | \right\|,\quad G _ 2:\quad \left\|  | ||
| + | \begin {array}{rr}  | ||
| + | 2&{-1}\\  | ||
| + | {-3}&2  | ||
| + | \end {array}  | ||
| + | \right\|.$$  | ||
| + | || conf 0.374  F    | ||
| − | + | l058510133.png (133)  | |
|-  | |-  | ||
| − | | 64.(98.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png || $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ||   | + | | 64.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|98.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png    | ||
| + | || $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$    | ||
| + | ||$$\mathfrak g_{\alpha }=\{X\in \mathfrak g:[H,X]=\alpha (H)X,H\in \mathfrak h\}.$$  | ||
| + | || conf 0.976  | ||
| − | + | l05851030.png (30)  | |
|-  | |-  | ||
| − | | 65.(126.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851037.png || $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ||   | + | | 65.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|126.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851037.png    | ||
| + | || $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$    | ||
| + | ||$$\mathfrak g=\mathfrak h+\sum _ {\alpha \in \Sigma }\mathfrak g_{\alpha }.$$  | ||
| + | || conf 0.945  | ||
| − | + | l05851037.png (37)  | |
|-  | |-  | ||
| − | | 66.(61.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851044.png || $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ ||   | + | | 66.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|61.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851044.png    | ||
| + | || $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$    | ||
| + | ||$$\mathfrak g_{\alpha }=\operatorname {dim}[\mathfrak g_{\alpha },\mathfrak g_{-\alpha }]=1.$$  | ||
| + | || conf 0.520  F    | ||
| − | + | l05851044.png (44)  | |
|-  | |-  | ||
| − | | 67.(65.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851050.png || $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ ||   | + | | 67.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|65.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851050.png    | ||
| + | || $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$    | ||
| + | ||$$[H_{\alpha },X_{\alpha }]=2X_{\alpha }\quad {\rm and }\quad [H_{\alpha },Y_{\alpha }]=-2Y_{\alpha }.$$  | ||
| + | || conf 0.539  F    | ||
| − | + | l05851050.png (50)  | |
|-  | |-  | ||
| − | | 68.(70.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851051.png || $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ ||   | + | | 68.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|70.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851051.png    | ||
| + | || $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$    | ||
| + | ||$$\beta (H_{\alpha })=\frac {2(\alpha ,\beta )}{(\alpha ,\alpha )},\quad \alpha ,\beta \in \Sigma,$$  | ||
| + | || conf 0.997  | ||
| − | + | l05851051.png (51)  | |
|-  | |-  | ||
| − | | 69.(112.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851057.png || $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ ||   | + | | 69.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|112.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851057.png    | ||
| + | || $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$    | ||
| + | ||$$[\mathfrak g_{\alpha },\mathfrak g_{\beta }]=\mathfrak g_{\alpha +\beta }$$  | ||
| + | || conf 0.917  | ||
| − | + | l05851057.png (57)  | |
|-  | |-  | ||
| − | | 70.(127.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851064.png || $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ ||   | + | | 70.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|127.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851064.png    | ||
| + | || $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$    | ||
| + | ||$$H_{\alpha _ 1},\ldots ,H_{\alpha _ k},X_{\alpha }\quad (\alpha \in \Sigma )$$  | ||
| + | || conf 0.432  | ||
| − | + | l05851064.png (64)  | |
|-  | |-  | ||
| − | | 71.(113.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851069.png || $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ ||   | + | | 71.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|113.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851069.png    | ||
| + | || $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$    | ||
| + | ||$$[[X_{\alpha _ i},X_{-}\alpha _ i],X_{-\alpha _ j}]=-n(i,j)X_{\alpha _ j},$$  | ||
| + | || conf 0.628  F    | ||
| − | + | l05851069.png (69)  | |
|-  | |-  | ||
| − | | 72.(79.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851073.png || $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ ||   | + | | 72.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|79.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851073.png    | ||
| + | || $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$    | ||
| + | ||$$n(i,j)=\alpha _ j(H_i)=\frac {2(\alpha _ i,\alpha _ j)}{(\alpha _ j,\alpha _ j)}.$$  | ||
| + | || conf 0.992  | ||
| − | + | l05851073.png (73)  | |
|-  | |-  | ||
| − | | 73.(13.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851074.png || $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ ||   | + | | 73.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|13.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851074.png    | ||
| + | || $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$    | ||
| + | ||$$[X_{\alpha },X_{\beta }]=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {N_{\alpha ,\beta }X_{\alpha +\beta }}	&{\text{ if }\alpha +\beta \in \Sigma,}\\  | ||
| + |  0	&{\text{ if }\alpha +\beta \notin \Sigma,}  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.988  | ||
| − | + | l05851074.png (74)  | |
|-  | |-  | ||
| − | | 74.(80.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851078.png || $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ ||   | + | | 74.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|80.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851078.png    | ||
| + | || $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$    | ||
| + | ||$$N_{\alpha ,\beta }=-N_{-\alpha ,-\beta }\quad {\rm and }\quad N _ {\alpha ,\beta }=\pm (p+1),$$  | ||
| + | || conf 0.961  | ||
| − | + | l05851078.png (78)  | |
|-  | |-  | ||
| − | | 75.(85.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851085.png || $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ ||   | + | | 75.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|85.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851085.png    | ||
| + | || $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$    | ||
| + | ||$$iH_\alpha,X_{\alpha }-X_{-\alpha },\quad i (X_{\alpha }+X_{-\alpha })\quad (\alpha \in \Sigma _ {+})$$  | ||
| + | || conf 0.691  F    | ||
| − | + | l05851085.png (85)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie algebra, solvable]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 76.(119.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852011.png || $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ ||   | + | | 76.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|119.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852011.png    | ||
| + | || $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$    | ||
| + | ||$[\mathfrak g_i,\mathfrak g_i]\subset \mathfrak g_{i+1}$  | ||
| + | || conf 0.276  F    | ||
| − | + | l05852011.png (11)  | |
|-  | |-  | ||
| − | | 77.(141.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852046.png || $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ ||   | + | | 77.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|141.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852046.png    | ||
| + | || $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$    | ||
| + | ||$\operatorname {dim}\mathfrak g_i=\operatorname {dim}\mathfrak g-i$  | ||
| + | || conf 0.901  | ||
| − | + | l05852046.png (46)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie group]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 78.(62.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590115.png || $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ ||   | + | | 78.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|62.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590115.png    | ||
| + | || $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$    | ||
| + | ||$$\operatorname {Aut}(G)\cong \operatorname {Aut}(L(G))\quad {\rm and }\quad L (\operatorname {Aut}(G))\cong D (L(G)),$$  | ||
| + | || conf 0.693  F    | ||
| − | + | l058590115.png (115)  | |
|-  | |-  | ||
| − | | 79.(50.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859086.png || $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ ||   | + | | 79.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|50.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859086.png    | ||
| + | || $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$    | ||
| + | ||$$(X,Y)\rightarrow \operatorname {exp}^{-1}(\operatorname {exp}X\operatorname {exp}Y),\quad X ,Y\in L (G),$$  | ||
| + | || conf 0.856  | ||
| − | + | l05859086.png (86)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie group, compact]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 80.(121.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861012.png || $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ ||   | + | | 80.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|121.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861012.png    | ||
| + | || $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$    | ||
| + | ||$$J=\left\|  | ||
| + | \begin {array}{cc}  | ||
| + |  0	&{E_x}\\  | ||
| + |  {-E_x}	&0  | ||
| + | \end {array}  | ||
| + | \right\|,$$  | ||
| + | || conf 0.364  F    | ||
| − | + | l05861012.png (12)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie group, nilpotent]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 81.(83.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l0586604.png || $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ ||   | + | | 81.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|83.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l0586604.png    | ||
| + | || $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$    | ||
| + | ||$$N(F)=\{g\in GL (V):gv\equiv v \operatorname {mod}V_i\;\text{for all }v\in V _ i,\;i\geq 1 \}$$  | ||
| + | || conf 0.466  | ||
| − | + | l0586604.png (4)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie group, semi-simple]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 82.(35.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680102.png || $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ ||   | + | | 82.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|35.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l058680102.png    | ||
| + | || $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$    | ||
| + | ||$$L(\mathfrak g)\cong \Gamma _ 0(\mathfrak u)\cap \mathfrak h^{\prime }/\Gamma _ 0([\mathfrak k,\mathfrak k])$$  | ||
| + | || conf 0.659  F    | ||
| − | + | l058680102.png (102)  | |
|-  | |-  | ||
| − | | 83.(81.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868032.png || $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ ||   | + | | 83.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|81.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868032.png    | ||
| + | || $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$    | ||
| + | ||$$\Gamma _ 1=\Gamma _ 1(g)=\{X\in h :\alpha (X)\in 2 \pi i {\mathbf Z}\;\text{for all }\alpha \in \Sigma \}.$$  | ||
| + | || conf 0.183  F    | ||
| − | + | l05868032.png (32)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie p-algebra]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 84.(36.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872026.png || $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ ||   | + | | 84.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|36.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872026.png    | ||
| + | || $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$    | ||
| + | ||$$(\operatorname {ad}x)^ny=\sum _ {j=1}^n(-1)^j\left(\begin {array}cn\\  | ||
| + |  j  | ||
| + | \end {array}  | ||
| + | \right)x^{n-j}yx^j$$  | ||
| + | || conf 0.356  | ||
| − | + | l05872026.png (26)  | |
|-  | |-  | ||
| − | | 85.(99.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872078.png || $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ ||   | + | | 85.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|99.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872078.png    | ||
| + | || $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$    | ||
| + | ||$$\pi (x+y)=\pi (x)+\pi (y),\quad \pi (\lambda x )=\lambda ^p\pi (x),\quad \lambda \in k .$$  | ||
| + | || conf 0.964  | ||
| − | + | l05872078.png (78)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Lie theorem]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 86.(134.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876010.png || $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ||   | + | | 86.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|134.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876010.png    | ||
| + | || $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i }    | ||
| + | || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$    | ||
| + | ||$$y_i=f_i(g_1,\ldots ,g_i;x_1,\ldots ,x_n),\quad i =1,\ldots ,n$$  | ||
| + | || conf 0.276  | ||
| − | + | l05876010.png (10)  | |
|-  | |-  | ||
| − | | 87.(86.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876016.png || $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ ||   | + | | 87.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|86.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876016.png    | ||
| + | || $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$    | ||
| + | ||$$X_i=\sum _ {j=1}^n\xi _ {ij}(x)\frac {\partial }{\partial x _ j},\quad i =1,\ldots ,r,$$  | ||
| + | || conf 0.656  | ||
| − | + | l05876016.png (16)  | |
|-  | |-  | ||
| − | | 88.(66.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876030.png || $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ ||   | + | | 88.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|66.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876030.png    | ||
| + | || $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$    | ||
| + | ||$$\frac {\partial f _ j}{\partial g _ i}(g,x)=\sum _ {k=1}^r\xi _ {kj}(f(g_sx))\psi _ {ki}(g),$$  | ||
| + | || conf 0.336  F    | ||
| − | + | l05876030.png (30)  | |
|-  | |-  | ||
| − | | 89.(19.)*||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876037.png || $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ ||   | + | | 89.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|19.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876037.png    | ||
| + | || $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$    | ||
| + | ||$$\sum _ {k=1}^N(\xi _ {ik}\frac {\partial \xi _ {jl}}{\partial x _ k}-\xi _ {jk}\frac {\partial \xi _ {il}}{\partial x _ k})=\sum _ {k=1}^rc_{ij}^k\xi _ {kl},$$  | ||
| + | || conf 0.157  F    | ||
| − | + | l05876037.png (37)  | |
|-  | |-  | ||
| − | | 90.(14.) ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876052.png || $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ ||   | + | | 90.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|14.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876052.png    | ||
| + | || $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$    | ||
| + | ||$$\left.\begin {array}c{c_{ij}^k=-c_{ji}^k},\\  | ||
| + |  {\displaystyle\sum _ {l=1}^r(c_{il}^mc_{jk}^l+c_{kl}^mc_{ij}^l+c_{jl}^mc_{ki}^l)=0,\quad 1 \leq i ,j,k,l,m\leq r,}  | ||
| + | \end {array}  | ||
| + | \right\}$$  | ||
| + | || conf 0.085  | ||
| − | + | l05876052.png (52)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Maximal torus]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 91.(95.) ||  https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301072.png || $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ ||   | + | | 91.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|95.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301072.png    | ||
| + | || $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$    | ||
| + | ||$$F(x_1f_1+\ldots +x_xf_n)=x_1x_n+x_2x_{n-1}+\ldots +x_px_{n-p+1},$$  | ||
| + | || conf 0.198  | ||
| − | + | m06301072.png (72)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Non-Abelian cohomology]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 92.(114.)*||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900110.png || $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ ||   | + | | 92.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|114.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900110.png    | ||
| + | || $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$    | ||
| + | ||$$\phi (g_1)\phi (g_2)\phi (g_1g_2)^{-1}=\operatorname {Int}m(g_1,g_2),$$  | ||
| + | || conf 0.443  F    | ||
| − | + | n066900110.png (110)  | |
|-  | |-  | ||
| − | | 93.(90.)*||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900118.png || $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ ||   | + | | 93.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|90.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900118.png    | ||
| + | || $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$    | ||
| + | ||$$m'(g_1,g_2)=h(g_1)(\phi (g_1)(h(g_2)))m(g_1,g_2)h(g_1,g_2)^{-1}.$$  | ||
| + | || conf 0.764  F    | ||
| − | + | n066900118.png (118)  | |
|-  | |-  | ||
| − | | 94.(44.) ||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690016.png || $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ ||   | + | | 94.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|44.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690016.png    | ||
| + | || $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$    | ||
| + | ||$$\delta (e)=e\quad \;\text{and }\quad \delta (\rho (a)b)=\sigma (a)\delta (b),\quad \alpha \in C ^0,\quad b \in C ^1,$$  | ||
| + | || conf 0.400  | ||
| − | + | n06690016.png (16)  | |
|-  | |-  | ||
| − | | 95.(60.)*||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690028.png || $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ ||   | + | | 95.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|60.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690028.png    | ||
| + | || $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$    | ||
| + | ||$$C^{*}(\mathfrak U,{\cal F})=(C^0(\mathfrak U,{\cal F}),C^1(\mathfrak U,{\cal F}),C^2(\mathfrak U,{\cal F})),$$  | ||
| + | || conf 0.205  F    | ||
| − | + | n06690028.png (28)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Picard scheme]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 96.(39.)*||  https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267025.png || $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ ||   | + | | 96.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|39.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267025.png    | ||
| + | || $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$    | ||
| + | ||$$\operatorname {Pic}_{X/k}(S^{\prime })=\operatorname {Pic}(X\times_k S ^{\prime })/\operatorname {Pic}(S^{\prime })$$  | ||
| + | || conf 0.345  F +  | ||
| − | + | p07267025.png (25)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Principal analytic fibration]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 97.(100.)*||  https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464025.png || $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ ||   | + | | 97.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|100.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464025.png    | ||
| + | || $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$    | ||
| + | ||$$g_j:U_i\cap U _ j\rightarrow G ,\quad i ,j\in I ,\quad U _ i\cap U _ j\neq \emptyset,$$  | ||
| + | || conf 0.184  F    | ||
| − | + | p07464025.png (25)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Quantum groups]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 98.(101.) ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631062.png || $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ ||   | + | | 98.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|101.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631062.png    | ||
| + | || $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$    | ||
| + | ||$$\phi ^{*}:\mathfrak g^{*}\otimes \mathfrak g^{*}\rightarrow \mathfrak g^{*}$$  | ||
| + | || conf 0.837  | ||
| − | + | q07631062.png (62)  | |
|-  | |-  | ||
| − | | 99.(108.) ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631071.png || $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ ||   | + | | 99.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|108.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631071.png    | ||
| + | || $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$    | ||
| + | ||$$\delta :U_{\mathfrak g}\rightarrow U _ {\mathfrak g}\otimes U _ {\mathfrak g}$$  | ||
| + | || conf 0.648  | ||
| − | + | q07631071.png (71)  | |
|-  | |-  | ||
| − | | 100.(56.)*||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631072.png || $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ ||   | + | | 100.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|56.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631072.png    | ||
| + | || $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$    | ||
| + | ||$$\delta (\alpha )=\operatorname {lim}_{h\rightarrow 0 }h^{-1}(\Delta (a)-\Delta ^{\prime }(\alpha ))$$  | ||
| + | || conf 0.304  F    | ||
| − | + | q07631072.png (72)  | |
|-  | |-  | ||
| − | | 101.(129.)*||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631088.png || $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ ||   | + | | 101.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|129.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631088.png    | ||
| + | || $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$    | ||
| + | ||$$[\alpha ,X_i^{\pm }]=\pm \alpha _ i(\alpha )X_i^{\pm }\quad \text{for }a\in \mathfrak h;$$  | ||
| + | || conf 0.544  F    | ||
| − | + | q07631088.png (88)  | |
|-  | |-  | ||
| − | | 102.(128.) ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631089.png || $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ||   | + | | 102.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|128.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631089.png    | ||
| + | || $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$    | ||
| + | ||$$[X_i^{+},X_j^{-}]=2\delta _ {ij}h^{-1}\operatorname {sinh}(hH_i/2).$$  | ||
| + | || conf 0.893  | ||
| − | + | q07631089.png (89)  | |
|-  | |-  | ||
| − | | 103.(20.) ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631092.png || $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ ||   | + | | 103.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|20.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631092.png    | ||
| + | || $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$    | ||
| + | ||$$\sum _ {k=0}^n(-1)^k\left(\begin {array}ln\\  | ||
| + |  k  | ||
| + | \end {array}  | ||
| + | \right)q^{-k(n-k)/2}(X_i^{\pm })^kX_j^{\pm }\cdot (X_i^{\pm })^{n-k}=0.$$  | ||
| + | || conf 0.055  | ||
| − | + | q07631092.png (92)  | |
|-  | |-  | ||
| − | | 104.(30.) ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png || $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ||   | + | | 104.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|30.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png    | ||
| + | || $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$    | ||
| + | ||$$\left(  | ||
| + | \begin {array}ln\\  | ||
| + |  k  | ||
| + | \end {array}  | ||
| + | \right)_q=\frac {(q^n-1)\ldots (q^{n-k+1}-1)}{(q^k-1)\ldots (q-1)}  | ||
| + | .$$  | ||
| + | || conf 0.443  | ||
| − | + | q07631095.png (95)  | |
|-  | |-  | ||
| − | | 105.(21.)*||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631099.png || $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ ||   | + | | 105.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|21.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631099.png    | ||
| + | || $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$    | ||
| + | ||$$\Delta (X_i^{\pm })=X_i^{\pm }\otimes \operatorname {exp}(\frac {hH_i}4)+\operatorname {exp}(\frac {-hH_i}4)\otimes X _ i^{\pm }.$$  | ||
| + | || conf 0.212  F    | ||
| − | + | q07631099.png (99)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Rational representation]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 106.(91.) ||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630100.png || $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ||   | + | | 106.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|91.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630100.png    | ||
| + | || $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$    | ||
| + | ||$$0\leq \frac {2(\chi ,\alpha )}{(\alpha ,\alpha )}<p\quad \text{for all }\alpha \in \Delta.$$  | ||
| + | || conf 0.879  | ||
| − | + | r077630100.png (100)  | |
|-  | |-  | ||
| − | | 107.(135.) ||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630104.png || $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ ||   | + | | 107.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|135.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630104.png    | ||
| + | || $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$    | ||
| + | ||$$\phi _ 0\otimes \phi _ 1^{Fr}\otimes \ldots \otimes \phi _ d^{{Fr}^d},$$  | ||
| + | || conf 0.136  | ||
| − | + | r077630104.png (104)  | |
|-  | |-  | ||
| − | | 108.(45.)*||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763055.png || $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ ||   | + | | 108.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|45.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763055.png    | ||
| + | || $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$    | ||
| + | ||$$\chi =\delta _ {\phi }-\sum _ {\alpha \in \Delta }m_{\alpha }\alpha ,\quad m _ {\alpha }\in Z ,\quad m _ {\alpha }\geq 0.$$  | ||
| + | || conf 0.862  F    | ||
| − | + | r07763055.png (55)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Singular point]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 109.(31.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590225.png || $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ ||   | + | | 109.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|31.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590225.png    | ||
| + | || $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$    | ||
| + | ||$$\sum _ {k_1,\ldots ,k_n=0}^{\infty }c_{k_1\cdots k _ n}(z_1-\zeta _ 1)^{k_1}\ldots (z_n-\zeta _ n)^{k_n}$$  | ||
| + | || conf 0.324  | ||
| − | + | s085590225.png (225)  | |
|-  | |-  | ||
| − | | 110.(46.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590404.png || $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ ||   | + | | 110.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|46.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590404.png    | ||
| + | || $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$    | ||
| + | ||$$\frac {m_1}{n_1}<\frac {m_2}{n_1n_2}<\ldots <\frac {m_g}{n_1\ldots n _ g}=\frac {m_g}n$$  | ||
| + | || conf 0.459  | ||
| − | + | s085590404.png (404)  | |
|-  | |-  | ||
| − | | 111.(115.)*||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590429.png || $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ ||   | + | | 111.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|115.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590429.png    | ||
| + | || $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$    | ||
| + | ||$$p(Z)=1-\operatorname {dim}H^0({\mathbf Z},{\cal O}_{\mathbf Z })+\operatorname {dim}H^1({\mathbf Z},{\cal O}_{\mathbf Z })$$  | ||
| + | || conf 0.997  F    | ||
| − | + | s085590429.png (429)  | |
|-  | |-  | ||
| − | | 112.(136.)*||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590440.png || $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ ||   | + | | 112.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|136.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590440.png    | ||
| + | || $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$    | ||
| + | ||$$X_{\epsilon }=\{(x_0,\ldots ,x_x):f(x_0,\ldots ,x_x)=\epsilon \}$$  | ||
| + | || conf 0.433  F    | ||
| − | + | s085590440.png (440)  | |
|-  | |-  | ||
| − | | 113.(12.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590458.png || $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ||   | + | | 113.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|12.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590458.png    | ||
| + | || $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$    | ||
| + | ||$$=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {(x+\lambda )^2\ldots (x+k\lambda )^2}	&{\text{ if }\mu =2k,}\\  | ||
| + |  {(x+\lambda )^2\ldots (x+k\lambda )^2(x+(k+1)\lambda )}	&{\text{ if }\mu =2k+1,}  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.870  | ||
| − | + | s085590458.png (458)  | |
|-  | |-  | ||
| − | | 114.(75.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590482.png || $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ ||   | + | | 114.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|75.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590482.png    | ||
| + | || $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$    | ||
| + | ||$$\big(\frac {\partial F (x,y,\lambda )}{\partial x },\frac {\partial F (x,y,\lambda )}{\partial y }\big)$$  | ||
| + | || conf 0.986  | ||
| − | + | s085590482.png (482)  | |
|-  | |-  | ||
| − | | 115.(137.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590515.png || $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ ||   | + | | 115.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|137.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590515.png    | ||
| + | || $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$    | ||
| + | ||$$\frac {dx_i}{dx_{i_0}}=f_i(x),\quad f _ i\in C (U),\quad i \neq i _ 0.$$  | ||
| + | || conf 0.594  | ||
| − | + | s085590515.png (515)  | |
|-  | |-  | ||
| − | | 116.(142.)*||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590527.png || $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ ||   | + | | 116.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|142.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590527.png    | ||
| + | || $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$    | ||
| + | ||$$A=\left\|  | ||
| + | \begin {array}{ll}  | ||
| + |  {\alpha }	&b\\  | ||
| + |  c	&e  | ||
| + | \end {array}  | ||
| + | \right\|$$  | ||
| + | || conf 0.506  F    | ||
| − | + | s085590527.png (527)  | |
|-  | |-  | ||
| − | | 117.(53.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590634.png || $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ ||   | + | | 117.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|53.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590634.png    | ||
| + | || $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$    | ||
| + | ||$$\Delta =(F_{xx}^{\prime \prime })_0(F_{yy}^{\prime \prime })_0-(F_{xy}^{\prime \prime })_0^2$$  | ||
| + | || conf 0.920  | ||
| − | + | s085590634.png (634)  | |
|-  | |-  | ||
| − | | 118.(16.)*||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590645.png || $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ ||   | + | | 118.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|16.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590645.png    | ||
| + | || $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$    | ||
| + | ||$$\left\|  | ||
| + | \begin {array}{lll}  | ||
| + |  {F_x^{\prime }}	&{F_y^{\prime }}	&{F_z^{\prime }}\\  | ||
| + |  {G_x^{\prime }}	&{G_y^{\prime }}	&{G_Z^{\prime }}  | ||
| + | \end {array}  | ||
| + | \right\|$$  | ||
| + | || conf 0.230  F    | ||
| − | + | s085590645.png (645)  | |
|-  | |-  | ||
| − | | 119.(92.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590653.png || $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ ||   | + | | 119.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|92.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590653.png    | ||
| + | || $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$    | ||
| + | ||$$(F_x^{\prime })_0=0,\quad (F_y^{\prime })_0=0,\quad (F_z^{\prime })_0=0.$$  | ||
| + | || conf 0.300  | ||
| − | + | s085590653.png (653)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Solv manifold]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 120.(138.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610054.png || $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ ||   | + | | 120.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|138.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s086/s086100/s08610054.png    | ||
| + | || $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$    | ||
| + | ||$$\{e\}\rightarrow \Delta \rightarrow \pi \rightarrow {\mathbf Z}^s\rightarrow \{e\}$$  | ||
| + | || conf 0.972  | ||
| − | + | s08610054.png (54)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Stability theorems in algebraic K-theory]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 121.(71.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706033.png || $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ ||   | + | | 121.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|71.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706033.png    | ||
| + | || $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$    | ||
| + | ||$$\psi _ {t_1,\ldots ,t_n}^{\prime }:SK_1(R)\rightarrow S K _ 1(R(t_1,\ldots ,t_n)).$$  | ||
| + | || conf 0.379  | ||
| − | + | s08706033.png (33)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Steinberg module]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 122.(130.) ||  https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053016.png || $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ ||   | + | | 122.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|130.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053016.png    | ||
| + | || $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$    | ||
| + | ||$$e=\frac {|U|}{|G|}\big(\sum _ {b\in B }b\big)\big(\sum _ {w\in W }\operatorname {sign}(w)w\big)$$  | ||
| + | || conf 0.138  | ||
| − | + | s13053016.png (16)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Steinberg symbol]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 123.(24.)*||  https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054017.png || $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ ||   | + | | 123.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|24.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054017.png    | ||
| + | || $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$    | ||
| + | ||$$(x_{ij}(a),x_{kl}(b))=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  1	&{\text{ if }i\neq l ,j\neq k },\\  | ||
| + |  {x_{il}(ab)}	&{\text{ if }i\neq l ,j=k}.  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.381  F    | ||
| − | + | s13054017.png (17)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Tilting theory]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 124.(84.) ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png || $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ||   | + | | 124.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|84.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png    | ||
| + | || $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$    | ||
| + | ||$$0\rightarrow \Lambda \rightarrow T _ 1\rightarrow \ldots \rightarrow T _ n\rightarrow 0 $$  | ||
| + | || conf 0.946  | ||
| − | + | t130130105.png (105)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Tits quadratic form]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 125.(18.) ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140104.png || $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ ||   | + | | 125.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|18.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140104.png    | ||
| + | || $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$    | ||
| + | ||$$q_R(x)=\sum _ {j\in Q _ 0}x_j^2-\sum _ {\langle \beta :i\rightarrow j )\in Q _ 1}x_ix_j+\sum _ {\langle \beta :i\rightarrow j )\in Q _ 1}r_{i,j}x_ix_j,$$  | ||
| + | || conf 0.112  | ||
| − | + | t130140104.png (104)  | |
|-  | |-  | ||
| − | | 126.(40.) ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140118.png || $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ ||   | + | | 126.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|40.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140118.png    | ||
| + | || $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$    | ||
| + | ||$$[X]\mapsto \chi _ R([X])=\sum _ {m=0}^{\infty }(-1)^m\operatorname {dim}_K\operatorname {Ext}_R^m(X,X)$$  | ||
| + | || conf 0.116    | ||
| − | + | t130140118.png (118)  | |
|-  | |-  | ||
| − | | 127.(132.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png || $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ||   | + | | 127.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|132.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png    | ||
| + | || $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$    | ||
| + | ||$$\underline {\dim }:K_0(\operatorname {mod}R)\rightarrow {\mathbf Z}^{Q_0}$$  | ||
| + | || conf 0.287 F    | ||
| − | + | t130140119.png (119)  | |
|-  | |-  | ||
| − | | 128.(37.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png || $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ||   | + | | 128.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|37.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png    | ||
| + | || $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$    | ||
| + | ||$$q_I(x)=\sum _ {i\in I }x_i^2+\sum _ {i\prec j \atop j\in I\setminus {\rm max}I}x_ix_j-\sum _ {p\in \operatorname {max}I}\big(\sum _ {i\prec p }x_i\big)x_p$$  | ||
| + | || conf 0.197  F    | ||
| − | + | t130140140.png (140)  | |
|-  | |-  | ||
| − | | 129.(131.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png || $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ||   | + | | 129.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|131.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png    | ||
| + | || $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$    | ||
| + | ||$$X\mapsto \underline {\dim }X=(\operatorname {dim}_KX_j)_{j\in Q _ 0}$$  | ||
| + | || conf 0.819  F    | ||
| − | + | t13014044.png (44)  | |
|-  | |-  | ||
| − | | 130.(25.  | + | | 130.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|25.]]   | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014048.png    | ||
| + | || $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$    | ||
| + | ||$$[X]\mapsto \chi _ Q([X])=\operatorname {dim}_K\operatorname {End}_Q(X)-\operatorname {dim}_K\operatorname {Ext}_Q^1(X,X)$$  | ||
| + | || conf 0.661  | ||
| − | + | t13014048.png (48)  | |
|-  | |-  | ||
| − | | 131.(38.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014056.png || $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ||   | + | | 131.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|38.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014056.png    | ||
| + | || $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$    | ||
| + | ||$$A_Q(v)=\prod _ {i,j\in Q _ 0}\prod _ {\langle \beta :j\rightarrow i \rangle \in Q _ 1}M_{v_i\times v _ j}(K)_{\beta }$$  | ||
| + | || conf 0.481  F    | ||
| − | + | t13014056.png (56)  | |
|-  | |-  | ||
| − | | 132.(139.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png || $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ ||   | + | | 132.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|139.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png    | ||
| + | || $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$    | ||
| + | ||$$q_Q(x)=\sum _ {j\in Q _ 0}x_j^2-\sum _ {i,j\in Q _ 0}d_{ij}x_ix_j,$$  | ||
| + | || conf 0.648  F    | ||
| − | + | t1301406.png (6)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | |||
| + | ==[[Torus]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 133.(41.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933502.png || $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ ||   | + | | 133.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|41.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933502.png    | ||
| + | || $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$    | ||
| + | ||$$r=\alpha \operatorname {sin}u{\bf k}+l(1+\epsilon \operatorname {cos}u)({\bf i}\operatorname {cos}v+{\bf j}\operatorname {sin}v)$$  | ||
| + | || conf 0.585  F    | ||
| − | + | t0933502.png (2)  | |
|-  | |-  | ||
| − | | 134.(122.)*||  https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933507.png || $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ ||   | + | | 134.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|122.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t0933507.png    | ||
| + | || $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$    | ||
| + | ||$$ds^2=\alpha ^2du^2+l^2(1+\epsilon \operatorname {cos}u)^2dv^2,$$  | ||
| + | || conf 0.696  F    | ||
| − | + | t0933507.png (7)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Uniform distribution]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 135.(9.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524027.png || $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ ||   | + | | 135.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|9.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524027.png    | ||
| + | || $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$    | ||
| + | ||$$u_3(x)=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {\frac {x^2}2,}	&{0\leq x <1,}\\  | ||
| + |  {\frac {[x^2-3(x-1)^2]}2,}	&{1\leq x <2,}\\  | ||
| + |  {\frac {[x^2-3(x-1)^2+3(x-2)^2]}2,}	&{2\leq x <3,}\\  | ||
| + |  {0,}	&{x\notin [0,3].}  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.733  | ||
| − | + | u09524027.png (27)  | |
|-  | |-  | ||
| − | | 136.(32.)*||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952403.png || $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ ||   | + | | 136.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|32.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952403.png    | ||
| + | || $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$    | ||
| + | ||$$p(x)=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {\frac 1{b-\alpha },}	&{x\in [\alpha ,b],}\\  | ||
| + |  {0,}	&{x\notin [\alpha ,b].}  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.681  F    | ||
| − | + | u0952403.png (3)  | |
|-  | |-  | ||
| − | | 137.(34.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524030.png || $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ ||   | + | | 137.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|34.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524030.png    | ||
| + | || $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$    | ||
| + | ||$$u_n(x)=\frac 1{(n-1)!}\sum _ {k=0}^n(-1)^k\left(\begin {array}ln\\  | ||
| + |  k  | ||
| + | \end {array}  | ||
| + | \right)(x-k)_{+}^{n-1}$$  | ||
| + | || conf 0.569  | ||
| − | + | u09524030.png (30)  | |
|-  | |-  | ||
| − | | 138.(109.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524034.png || $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ ||   | + | | 138.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|109.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524034.png    | ||
| + | || $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$    | ||
| + | ||$$z_{+}=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {z,}	&{z>0}.\\  | ||
| + |  {0,}	&{z\leq 0 }.  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.676  | ||
| − | + | u09524034.png (34)  | |
|-  | |-  | ||
| − | | 139.(43.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952407.png || $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ ||   | + | | 139.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|43.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u0952407.png    | ||
| + | || $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$    | ||
| + | ||$$F(x)=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {0,}	&{x\leq a },\\  | ||
| + |  {\frac {x-a}{b-a},}	&{a<x\leq b },\\  | ||
| + |  {1,}	&{x>b},  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.468  | ||
| − | + | u0952407.png (7)  | |
|-  | |-  | ||
| − | | 140.(47.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524072.png || $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ ||   | + | | 140.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|47.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524072.png    | ||
| + | || $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$    | ||
| + | ||$$p(x_1,\ldots ,x_n)=\left\{  | ||
| + | \begin {array}{ll}  | ||
| + |  {C\neq 0 ,}	&{x\in D },\\  | ||
| + |  {0,}	&{x\notin D },  | ||
| + | \end {array}  | ||
| + | \right.$$  | ||
| + | || conf 0.705  | ||
| − | + | u09524072.png (72)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Unipotent group]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 141.(143.) ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u0954106.png || $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ ||   | + | | 141.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|143.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u0954106.png    | ||
| + | || $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$    | ||
| + | ||$$\{g\in \operatorname {GL}(V):(1-g)^n=0\},\quad n =\operatorname {dim}V,$$  | ||
| + | || conf 0.287  | ||
| − | + | u0954106.png (6)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Weyl module]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 142.(51.) ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png || $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ||   | + | | 142.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|51.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png    | ||
| + | || $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$    | ||
| + | ||$$\operatorname {diag}(t_1,\ldots ,t_n)\mapsto t _ 1^{\lambda _ 1}\ldots t _ n^{\lambda _ n}\in K,$$  | ||
| + | || conf 0.507  | ||
| − | + | w120090122.png (122)  | |
|-  | |-  | ||
| − | | 143.(54.)*||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090135.png || $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ ||   | + | | 143.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|54.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090135.png    | ||
| + | || $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$    | ||
| + | ||$$\chi _ {\lambda }=\sum _ {\mu \in \Lambda (n)}\operatorname {dim}_K(\Delta (\lambda )^{\mu })_{e_{\mu }},$$  | ||
| + | || conf 0.461  F    | ||
| − | + | w120090135.png (135)  | |
|-  | |-  | ||
| − | | 144.(110.) ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090259.png || $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ ||   | + | | 144.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|110.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090259.png    | ||
| + | || $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$    | ||
| + | ||$$\mathfrak B=\{e_{\pm }\alpha ,h_{\beta }:\alpha \in \Phi ^{+},\beta \in \Sigma \}.$$  | ||
| + | || conf 0.381  | ||
| − | + | w120090259.png (259)  | |
|-  | |-  | ||
| − | | 145.(82.) ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png || $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ||   | + | | 145.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|82.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png    | ||
| + | || $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$    | ||
| + | ||$$\left(  | ||
| + | \begin {array}ch\\  | ||
| + |  i  | ||
| + | \end {array}  | ||
| + | \right)=\frac {h(h-1)\ldots (h-i+1)}{i!}  | ||
| + | $$  | ||
| + | || conf 0.487  | ||
| − | + | w120090342.png (342)  | |
|-  | |-  | ||
| − | | 146.(28.)*||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png || $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ||   | + | | 146.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|28.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png    | ||
| + | || $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$    | ||
| + | ||$$\mathfrak S_{\{1,\ldots ,\lambda _ 1\}}\times \mathfrak S_{\{\lambda _ 1+1,\ldots ,\lambda _ 1+\lambda _ 2\}}\times \dots $$  | ||
| + | || conf 0.312  F    | ||
| − | + | w12009095.png (95)  | |
|-  | |-  | ||
| − | | 147.(104.) ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009096.png || $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ ||   | + | | 147.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|104.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009096.png    | ||
| + | || $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$    | ||
| + | ||$$\ldots \times \mathfrak S_{\{\lambda _ 1+\ldots +\lambda _ {n-1}+1,\ldots ,r\}},$$  | ||
| + | || conf 0.259  | ||
| − | + | w12009096.png (96)  | |
|-  | |-  | ||
| − | + | |}  | |
| + | ==[[Witt vector]]==  | ||
| + | {| class="wikitable" style="text-align: left; width: 1740px;"  | ||
| + | !style=width: 3%| Nr.  | ||
| + | !style=width: 30%| Image of png File  | ||
| + | !style=width: 30%| $\TeX$, automatically generated version  | ||
| + | !style=width: 30%| $\TeX$, manually corrected version  | ||
| + | !style=width: 7%| Confidence, F?  | ||
| + | png file   | ||
|-  | |-  | ||
| − | | 148.(87.)*||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100172.png || $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ ||   | + | | 148.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|87.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100172.png    | ||
| + | || $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$    | ||
| + | ||$$\langle \alpha ><b\rangle =\langle \alpha b \rangle ,\quad \langle {\bf 1}\rangle ={\bf f}_1={\bf V}_1=\text{ unit element}1,$$  | ||
| + | || conf 0.351  F    | ||
| − | + | w098100172.png (172)  | |
|-  | |-  | ||
| − | | 149.(123.)*||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100177.png || $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ ||   | + | | 149.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|123.]])*  | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100177.png    | ||
| + | || $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$    | ||
| + | ||$$\langle \alpha +b\rangle =\sum _ {n=1}^{\infty }{\bf V}_n\langle r _ n(\alpha ,b){\bf f}_n.$$  | ||
| + | || conf 0.143  F    | ||
| − | + | w098100177.png (177)  | |
|-  | |-  | ||
| − | | 150.(102.) ||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100190.png || $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ ||   | + | | 150.([[User:Maximilian Janisch/latexlist/latex/Algebraic Groups/E|102.]])    | 
| + | ||  https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100190.png    | ||
| + | || $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$    | ||
| + | ||$$\sigma (\alpha _ 1,\alpha _ 2,\ldots )=(\alpha _ 1^p,\alpha _ 2^p,\ldots )$$  | ||
| + | || conf 0.771  | ||
| − | + | w098100190.png (190)  | |
|-  | |-  | ||
|}  | |}  | ||
Latest revision as of 17:27, 11 November 2019
This page gives an analysis of the code here, generated automatically from some png files underlying our old wiki pages. As this page does contain a lot of $\TeX$ code, it loads slowly.
Under the name of some of our EoM-pages the table below lists some png files, displaying their image and their $TeX$ rendering (automatically retrieved and corrected by hand). The first column gives the running number in this table, followed (in parentheses) by the number used here. The last column gives the confidence and the name of the png file, followed (in parentheses) by the number it has in the sequence of all png files called by its calling EoM-page.
Here is a short survey of the more systematic errors which seem to occur:
- 1. Trailing punctuation is dismissed.
 - [concerns almost all images] ; technically: pixels in sparse last pixel columns of bit images are suppressed/ignored?
 
- 2. "Displayed" images are not recognized as such.
 - [concerns almost all images]
 - Therefore these are displayed too small, and like "inline" $\TeX$ format.
 - Remark: This cannot be discovered from the png file, it has to be retrieved from the html markup in the calling file: Displayed images are embedded in some html <table> markup.
 - 3. Sparse initial column pixels of the bit image are dismissed
 - (in parts this affects essential symbols), [see nr. 15,16,36,43,58,59,60,61,62,63,97,109]
 
- 4. Some fonts are not recognized
 - \cal: [7.12.25.26,30,31,32,33,95,111] \mathbf: [30,83,111,127] \bf:[ 133,148,149]
 - 5. Semi-colon is interpreted as double pipe = "||"
 - [33,49,86,101]
 - 6. Some code is not displayed at all.
 - (This seems to be a bug of our MathJax TeX interpreter.) [67,74,78,81,83,94,101,106]
 - This seems to happen when a string "\text {" is involved, can apparently be fixed by using "\text{", but still unclear.
 - 7. Questions
 - The different interpretation of the matrix delimiters in [56-63] is a bit surprising. Should be checked!
 - Also, the vanishing of some '-' signs in the first column of some matrices, maybe that is related to 3.?
 
Algebraic curve
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 1.(23.) |  
 | 
$g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ | $$g\leq \left\{ \begin {array}{ll} {\frac {(n-2)^2}4} &{\text{ for even }n,}\\ {\frac {(n-1)(n-3)}4} &{\text{ for odd }n,} \end {array} \right.$$ | conf 0.698
 a01145065.png (65)  | 
Algebraic geometry
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 2.(116.) |  
 | 
$\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\theta =\int\limits _ 0^{\lambda }\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$ | conf 0.997
 a01150014.png (14)  | 
| 3.(133.) |  
 | 
$\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\omega =2\int\limits _ 0^{1/c}\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$ | conf 0.973
 a01150021.png (21)  | 
| 4.(67.) |  
 | 
$\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\widetilde w=2\int\limits _ 0^{1/\varepsilon }\frac {dx}{\sqrt {(1-c^2x^2)(1-e^2x^2)}},$$ | conf 0.107
 a01150022.png (22)  | 
| 5.(105.) |  
 | 
$\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ | $$\theta (v+\pi i r )=\theta (r),\quad \theta (v+\alpha _ j)=e^{L_j(v)}\theta (v),$$ | conf 0.775
 a01150044.png (44)  | 
| 6.(17.) |  
 | 
$\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ | $$\left( \begin {array}{ll} {\alpha } &b\\ c &d \end {array} \right)\equiv \left( \begin {array}{ll} 1&0\\ 0&1 \end {array} \right)(\operatorname {mod}7).$$ | conf 0.440
 a01150078.png (78)  | 
Algebraic surface
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 7.(144.) |  
 | 
$0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ | $$0\rightarrow {\cal O}_V\rightarrow E _ {\alpha }\rightarrow T _ V\rightarrow 0$$ | conf 0.981
 a011640132.png (132)  | 
| 8.(73.) |  
 | 
$M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ | $$M=\operatorname {dim}\operatorname {Im}(H^1(V,E_{\alpha })\rightarrow H ^1(V,T_V)).$$ | conf 0.997
 a011640137.png (137)  | 
| 9.(88.) |  
 | 
$\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ | $$\operatorname {dim}_kH^2(V,E_{\alpha })+\operatorname {dim}_kH^2(V,T_V).$$ | conf 0.996
 a011640139.png (139)  | 
| 10.(117.) |  
 | 
$N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ | $$N_m=\left(\begin {array}c{m+3}\\ 3 \end {array} \right)-dm+2t+\tau +p-1.$$ | conf 0.369
 a01164027.png (27)  | 
| 11.(72.) |  
 | 
$p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ | $$p_{\alpha }(V)=\left(\begin {array}c{n-1}\\ 3 \end {array} \right)-d(n-1)+2t+\tau +p-1$$ | conf 0.396
 a01164029.png (29)  | 
| 12.(68.)* |  
 | 
$p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ | $$p_{\alpha }(V)=-\operatorname {dim}_kH_1(V,{\cal O}_V)+\operatorname {dim}_kH^2(V,{\cal O}_V)=$$ | conf 0.756  F
 a01164047.png (47)  | 
| 13.(93.)* |  
 | 
$1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ | $$1+p_{\alpha }(V)=\frac {\operatorname {deg}(c_1^2)+\operatorname {deg}(c_2)}{12},$$ | conf 0.752  F
 a01164053.png (53)  | 
Cartan subalgebra
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 14.(33.)* |  
 | 
$\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ | $$\mathfrak g_0=\big\{X\in \mathfrak g:\forall H \in \mathfrak t\exists n_{X,H}\in {\mathbb Z}((\text{ ad }H)^{n_{X,H}}(X)=0)\big\},$$ | conf 0.110  F
 c0205509.png (9)  | 
Cartan theorem
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 15.(49.)* |  
 | 
$f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ | $$[e_i,f_j]=\delta _ {ij}h_i,\quad [h_i,e_j]=\alpha _ {ij}e_j,\quad [h_i,f_j]=-\alpha _ {ij}f_j,$$ | conf 0.149  F
 c0205704.png (4)  | 
| 16.(55.)* |  
 | 
$\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ | $$\dots \rightarrow H ^p(X,S)\rightarrow H ^p(X,F)\stackrel {\phi_p }{\rightarrow }H^p(X,G)\rightarrow $$ | conf 0.853  F
 c02057064.png (64)  | 
Comitant
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 17.(7.) |  
 | 
$H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ | $$H=\frac 1{36}\left| \begin {array}{cc} {\frac {\partial ^2f}{\partial x ^2}} &{\frac {\partial ^2f}{\partial x \partial y }}\\ {\frac {\partial ^2f}{\partial x \partial y }} &{\frac {\partial ^2f}{\partial y ^2}} \end {array} \right|=$$ | conf 0.956
 c02333033.png (33)  | 
| 18.(76.) |  
 | 
$= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ | $$=(a_0a_2-a_1^2)x^2+(a_0a_3-a_1a_2)xy+(a_1a_3-a_2^2)y^2$$ | conf 0.549
 c02333034.png (34)  | 
| 19.(11.)* |  
 | 
$( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ | $$(\alpha _ 0,\alpha _ 1,\alpha _ 2,\alpha _ 3)\mapsto (\alpha _ 0\alpha _ 2-\alpha _ 1^2,\frac 12(\alpha _ 0\alpha _ 3-\alpha _ 1\alpha _ 2),\alpha _ 1\alpha _ 3-\alpha _ 2^2)$$ | conf 0.521  F
 c02333035.png (35)  | 
Deformation
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 20.(26.) |  
 | 
$\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ | $$\operatorname {Aut}_{R^{\prime }}(X^{\prime }|X_0)\rightarrow \operatorname {Aut}_R(X_{R^{\prime }}^{\prime }\otimes R |X_0)$$ | conf 0.683
\ d030700175.png (175)  | 
| 21.(27.) |  
 | 
$\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ | $$\operatorname {dim}_kH^1(X_0,T_{X_0})-\operatorname {dim}M_{X_0}\leq \operatorname {dim}_kH^2(X_0,T_{X_0}).$$ | conf 0.944
 d030700190.png (190)  | 
| 22.(78.)* |  
 | 
$\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ | $$\alpha \circ b =\alpha b +\sum _ {i=1}^{\infty }\phi _ i(\alpha ,b)t^i,\quad \alpha ,b\in V,$$ | conf 0.097  F
 d030700263.png (263)  | 
| 23.(96.)* |  
 | 
$\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ | $$\Phi (\alpha )=\alpha +\sum _ {i=1}^{\infty }t^i\phi _ i(\alpha ),\quad \alpha \in V,$$ | conf 0.873  F
 d030700270.png (270)  | 
Differential algebra
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 24.(106.) |  
 | 
$S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ | $$S^tF=\sum _ {j=1}^rc_jA^{p_j}A_1^{i_{1j}}\dots A _ {m-l}^{i_{{m-l},j}},$$ | conf 0.149
 d031830107.png (107)  | 
| 25.(146.)* |  
 | 
$( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ | $(\eta _ 1,\ldots ,\eta _ k)\rightarrow {}_{\cal F}(\zeta _ 1,\ldots ,\zeta _ k)$ | conf 0.562  F
 d031830141.png (141)  | 
| 26.(145.)$^F$* |  
 | 
$( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ | $(\eta _ 1,\ldots ,\eta _ n)\rightarrow {}_{\cal F}(\zeta _ 1,\ldots ,\zeta _ n)$ | conf 0.376  F
 d031830150.png (150)  | 
| 27.(57.) |  
 | 
$\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$\omega _ V=\sum _ {0\leq i \leq m }\alpha _ i\left( \begin {array}c{x+i}\\ i \end {array} \right),$$ | conf 0.780
 d03183016.png (16)  | 
| 28.(111.) |  
 | 
$e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ | $$e_{ij}=\operatorname {ord}_{Y_j}F_i,\quad 1 \leq i \leq n ,\quad i \leq j \leq n,$$ | conf 0.187
 d03183043.png (43)  | 
Dimension polynomial
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 29.(48.) |  
 | 
$\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$\omega _ {\eta /F}(x)=\sum _ {0\leq i \leq m }\alpha _ i\left(\begin {array}c{x+i}\\ i \end {array} \right),$$ | conf 0.968
 d03249029.png (29)  | 
Duality
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | |
|---|---|---|---|---|---|
| 30.(118.)* |  
 | 
$H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ | $$H^p(X,{\cal F})\times H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega ))\rightarrow {\mathbf C},$$ | conf 0.824  F
 d034120173.png (173)  | |
| 31.(59.)* |  
 | 
$H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ | $$H^p(X,{\cal F})\times H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega ))\rightarrow H _ c^n(X,\Omega )$$ | conf 0.921  F
 d034120175.png (175)  | |
| 32.(124.)* |  
 | 
$( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ | $$(H^p(X,{\cal F}))^{\prime }\cong H _ c^{n-p}(X,\operatorname {Hom}({\cal F},\Omega )).$$ | conf 0.829  F
 d034120184.png (184)  | |
| 33.(29.)* |  
 | 
$\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y || F , \Omega )$ | $$\beta :\operatorname {Ext}_c^{n-p-1}(X;{\cal F},\Omega )\rightarrow \operatorname {Ext}_c^{n-p-1}(X\backslash Y ;{\cal F},\Omega ).$$ | conf 0.634 | F
 d034120236.png (236)  | 
| 34.(77.)* |  
 | 
$\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ | $$\underset {n\rightarrow \infty }{\overline {\lim }}|\alpha _ n|^{1/n}=\sigma <+\infty.$$ | conf 0.521  F
 d034120247.png (247)  | |
| 35.(58.)* |  
 | 
$h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ | $$h(\phi )=\underset {n\rightarrow \infty }{\overline {\lim }}\frac {\operatorname {ln}|A(re^{i\phi })|}r$$ | conf 0.861  F
 d034120253.png (253)  | |
| 36.(69.)* |  
 | 
$\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ | $$\operatorname*{sup}_{l\in E^\perp \atop \|l\|\le 1 }|l(\omega )|=\operatorname*{inf}_{x\in E }\|\omega -x\|,$$ | conf 0.293   F
 d034120360.png (360)  | |
| 37.(15.) |  
 | 
$\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ | $$\operatorname*{sup}_{f\in B ^1}\big|\int\limits _ {\partial G }f(\zeta )\omega (\zeta )d\zeta \big|=\operatorname*{inf}_{\phi \in E ^1}\int\limits _ {\partial G }|\omega (\zeta )-\phi (\zeta ) ||d\zeta |.$$ | conf 0.508
 d034120376.png (376)  | |
| 38.(52.) |  
 | 
$f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ | $$f=\{f_{\alpha }\}\in \prod _ {\alpha }F_{\alpha },\quad g =\{g_{\alpha }\}\in \operatorname*\oplus _ {\alpha }G_{\alpha }.$$ | conf 0.491
 d034120509.png (509)  | |
| 39.(140.) |  
 | 
$f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ | $$f^{*}(x^{*})=\operatorname*{sup}_{x\in X }(\langle x ^{*},x\rangle -f(x))$$ | conf 0.900
 d034120535.png (535)  | |
| 40.(94.) |  
 | 
$f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ | $$f_0(x)\rightarrow \text{ inf, }\quad f _ i(x)\leq 0 ,\quad i =1,\ldots ,m,\quad x \in B,$$ | conf 0.810
 d034120555.png (555)  | |
| 41.(74.)* |  
 | 
$( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ | $$(c_{\gamma },c^r)=\sum _ {t^r\in K }c_r(t^{\prime })c^r(t^r)\operatorname {mod}1$$ | conf 0.117  F
 d03412079.png (79)  | 
Extension of a differential field
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 42.(63.) |  
 | 
$F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ | $$F_1F_2=F_1\langle F _ 2\rangle =F_1(F_2)=F_2(F_1)=F_2\langle F _ 1\rangle,$$ | conf 0.628
 e03696024.png (24)  | 
Formal group
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 43.(120.)* |  
 | 
$\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ | $$\operatorname {log}F_{\rm MU }(X)=\sum _ {i=1}^{\infty }i^{-1}[{\rm CP}^{i-1}]X^i,$$ | conf 0.098  F
 f040820118.png (118)  | 
| 44.(147.)* |  
 | 
$( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ | $$(x_1,\ldots ,x_n)\circ (y_1,\ldots ,y_n)=(z_1,\ldots ,z_n),$$ | conf 0.553  F
 f04082059.png (59)  | 
Gel'fond-Schneider method
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 45.(148.) |  
 | 
$\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ | $\alpha ^{\beta }=\operatorname {exp}\{\beta \operatorname {log}\alpha \}$ | conf 0.979
 g1300205.png (5)  | 
Group
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 46.(22.)* |  
 | 
$\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ | source incomplete | conf 0.226  F
 g04521075.png (75)  | 
Homogeneous space
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 47.(89.) |  
 | 
$\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ | $$\mathfrak g=\mathfrak f+\mathfrak m,\quad \mathfrak f\cap \mathfrak m=\{0\},$$ | conf 0.793
 h04769069.png (69)  | 
Hopf algebra
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 48.(103.) |  
 | 
$m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ | $m\circ (\iota \otimes 1 )\circ \mu =m\circ (1\otimes \iota )\circ \mu =e\circ \epsilon$ | conf 0.618
 h047970129.png (129)  | 
| 49.(107.)* |  
 | 
$F _ { 1 } ( X || Y ) , \ldots , F _ { n } ( X || Y ) \in K [ X _ { 1 } , \ldots , X _ { n } || Y _ { 1 } , \ldots , Y _ { n } ] \}$ | $F_1(X;Y),\ldots ,F_n(X;Y)\in K [X_1,\ldots ,X_n;Y_1,\ldots ,Y_n]\}$ | conf 0.353  F
 h047970139.png (139)  | 
| 50.(97.) |  
 | 
$\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ | $$\epsilon (x)=0,\quad \delta (x)=x\otimes 1 +1\otimes x ,\quad x \in \mathfrak g.$$ | conf 0.213
 h04797042.png (42)  | 
Invariants, theory of
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 51.(149.)* |  
 | 
$\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ | $$\alpha _ {i_1,\dots,i_n}\rightarrow \alpha _ {i_1,\dots,i_n}^{\prime }.$$ | conf 0.142  F
 i05235015.png (15)  | 
Jordan algebra
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 52.(150.) |  
 | 
$H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ | $$(C_3,\Gamma )=\big\{X\in C _ 3:X=\Gamma ^{-1}X\square ^{\prime }\Gamma \big\},$$ | conf 0.651
 j05427030.png (30)  | 
| 53.(42.) |  
 | 
$\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ | $$\Gamma =\operatorname {diag}\{\gamma _ 1,\gamma _ 2,\gamma _ 3\},\quad \gamma _ i\neq 0 ,\quad \gamma _ i\in F,$$ | conf 0.987
 j05427031.png (31)  | 
| 54.(125.)* |  
 | 
$\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ | $\mathfrak g=\mathfrak g_{-1}+\mathfrak g_0+\mathfrak g_1$ | conf 0.598  F
 j05427077.png (77)  | 
Jordan matrix
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 55.(6.)* |  
 | 
$J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ | $$J=\left\| \begin {array}{cccc} J_{n_1}(\lambda_1) &0 &0 &0\\ 0 &\ddots &\ddots &0\\ 0 &\ddots &\ddots &0\\ 0 &0 &0 &J_{n_s}(\lambda_s) \end {array} \right\|,$$ | conf 0.072  F
 j0543403.png (3)  | 
| 56.(64.) |  
 | 
$C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ | $$C_m(\lambda )=\operatorname {rk}(A-\lambda E )^{m-1}-2\operatorname {rk}(A-\lambda E )^m+$$ | conf 0.955
 j05434030.png (30)  | 
| 57.(1.)* |  
 | 
$J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ | $$J_m(\lambda)=\left\| \begin {array}{cccccc} \lambda &1 &\square &\square &\square &\square \\ \square &\lambda &1 &\square &0 &\square \\ \square &\square &\ddots &\ddots &\square &\square\\ \square &\square &\square &\ddots &\ddots &\square \\ \square &0 &\square &\square &\lambda &1\\ \square &\square &\square &\square &\square &\lambda \end {array} \right\|,$$ | conf 0.098  F
 j0543406.png (6)  | 
Lie algebra, semi-simple
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 58.(5.) |  
 | 
$\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ | $$B_n:\quad \left\| \begin {array}{rrrrrr} 2 &{-1} &0 &{\dots } &0 &0\\ {-1} &2 &{-1} &{\dots } &0 &0\\ 0 &{-1} &2 &{\dots } &0 &0\\ \cdot &\cdot &\cdot &\dots &\cdot &\cdot \\ 0 &0 &0 &{\dots } &{-1} &0\\ 0 &0 &0 &{\dots } &2 &{-2}\\ 0 &0 &0 &{\dots } &{-1} &2 \end {array} \right\|,$$ | conf 0.232
 l058510127.png (127)  | 
| 59.(3.)* |  
 | 
$\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ | $$D_n:\quad \left\| \begin {array}{rrrrrrr} 2 &{-1} &0 &{\dots } &0 &0 &0 &0\\ {-1} &2 &{-1} &{\dots } &0 &0 &0 &0\\ 0 &{-1} &2 &{\dots } &0 &0 &0 &0\\ \cdot &\cdot &\cdot &\dots &\cdot &\cdot &\cdot &\cdot \\ 0 &0 &0 &{\dots } &2 &{-1} &0 &0\\ 0 &0 &0 &{\dots } &{-1} &2 &{-1} &{-1}\\ 0 &0 &0 &{\dots } &0 &{-1} &2 &0\\ 0 &0 &0 &{\dots } &0 &{-1} &0 &2 \end {array} \right\|,$$ | conf 0.055  F
 l058510129.png (129)  | 
| 60.(8.)* |  
 | 
$\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_6: \quad \left\| \begin {array}{rrrrrr} 2 &0 &{-1} &0 &0 &0\\ 0 &2 &0 &{-1} &0 &0\\ {-1} &0 &2 &{-1} &0 &0\\ 0 &{-1} &{-1} &2 &{-1} &0\\ 0 &0 &0 &{-1} &2 &{-1}\\ 0 &0 &0 &0 &{-1} &2 \end {array} \right\|,$$ | conf 0.628  F
 l058510130.png (130)  | 
| 61.(4.) |  
 | 
$\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_7:\quad \left\| \begin {array}{rrrrrrr} 2 &0 &{-1} &0 &0 &0 &0\\ 0 &2 &0 &{-1} &0 &0 &0\\ {-1} &0 &2 &{-1} &0 &0 &0\\ 0 &{-1} &{-1} &2 &{-1} &0 &0\\ 0 &0 &0 &{-1} &2 &{-1} &0\\ 0 &0 &0 &0 &{-1} &2 &{-1}\\ 0 &0 &0 &0 &0 &{-1} &2 \end {array} \right\|,$$ | conf 0.278
 l058510131.png (131)  | 
| 62.(2.)* |  
 | 
$\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ | $$E_8:\quad \left\| \begin {array}{rrrrrrrr} 2 &0 &{-1} &0 &0 &0 &0 & 0\\ 0 &2 &0 &{-1} &0 &0 &0 &0\\ {-1} &0 &2 &{-1} &0 &0 &0 &0\\ 0 &{-1} &{-1} &2 &{-1} &0 &0 &0\\ 0 &0 &0 &{-1} &2 &{-1} &0 &0\\ 0 &0 &0 &0 &{-1} &2 &{-1} &0\\ 0 &0 &0 &0 &0 &{-1} &2 &{-1}\\ 0 &0 &0 &0 &0 &0 &{-1} &2 \end {array} \right\|,$$ | conf 0.354  F
 l058510132.png (132)  | 
| 63.(10.)* |  
 | 
$\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ | $$F_4:\quad \left\| \begin {array}{rrrr} 2 &{-1} &0 &0\\ {-1} &2 &{-2} &0\\ 0 &{-1} &2 &{-1}\\ 0 &0 &{-1} &2 \end {array} \right\|,\quad G _ 2:\quad \left\| \begin {array}{rr} 2&{-1}\\ {-3}&2 \end {array} \right\|.$$ | conf 0.374  F
 l058510133.png (133)  | 
| 64.(98.) |  
 | 
$\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ | $$\mathfrak g_{\alpha }=\{X\in \mathfrak g:[H,X]=\alpha (H)X,H\in \mathfrak h\}.$$ | conf 0.976
 l05851030.png (30)  | 
| 65.(126.) |  
 | 
$\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ | $$\mathfrak g=\mathfrak h+\sum _ {\alpha \in \Sigma }\mathfrak g_{\alpha }.$$ | conf 0.945
 l05851037.png (37)  | 
| 66.(61.)* |  
 | 
$\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ | $$\mathfrak g_{\alpha }=\operatorname {dim}[\mathfrak g_{\alpha },\mathfrak g_{-\alpha }]=1.$$ | conf 0.520  F
 l05851044.png (44)  | 
| 67.(65.)* |  
 | 
$[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ | $$[H_{\alpha },X_{\alpha }]=2X_{\alpha }\quad {\rm and }\quad [H_{\alpha },Y_{\alpha }]=-2Y_{\alpha }.$$ | conf 0.539  F
 l05851050.png (50)  | 
| 68.(70.) |  
 | 
$\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ | $$\beta (H_{\alpha })=\frac {2(\alpha ,\beta )}{(\alpha ,\alpha )},\quad \alpha ,\beta \in \Sigma,$$ | conf 0.997
 l05851051.png (51)  | 
| 69.(112.) |  
 | 
$[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ | $$[\mathfrak g_{\alpha },\mathfrak g_{\beta }]=\mathfrak g_{\alpha +\beta }$$ | conf 0.917
 l05851057.png (57)  | 
| 70.(127.) |  
 | 
$H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ | $$H_{\alpha _ 1},\ldots ,H_{\alpha _ k},X_{\alpha }\quad (\alpha \in \Sigma )$$ | conf 0.432
 l05851064.png (64)  | 
| 71.(113.)* |  
 | 
$[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ | $$[[X_{\alpha _ i},X_{-}\alpha _ i],X_{-\alpha _ j}]=-n(i,j)X_{\alpha _ j},$$ | conf 0.628  F
 l05851069.png (69)  | 
| 72.(79.) |  
 | 
$n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ | $$n(i,j)=\alpha _ j(H_i)=\frac {2(\alpha _ i,\alpha _ j)}{(\alpha _ j,\alpha _ j)}.$$ | conf 0.992
 l05851073.png (73)  | 
| 73.(13.) |  
 | 
$[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ | $$[X_{\alpha },X_{\beta }]=\left\{ \begin {array}{ll} {N_{\alpha ,\beta }X_{\alpha +\beta }} &{\text{ if }\alpha +\beta \in \Sigma,}\\ 0 &{\text{ if }\alpha +\beta \notin \Sigma,} \end {array} \right.$$ | conf 0.988
 l05851074.png (74)  | 
| 74.(80.) |  
 | 
$N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ | $$N_{\alpha ,\beta }=-N_{-\alpha ,-\beta }\quad {\rm and }\quad N _ {\alpha ,\beta }=\pm (p+1),$$ | conf 0.961
 l05851078.png (78)  | 
| 75.(85.)* |  
 | 
$X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ | $$iH_\alpha,X_{\alpha }-X_{-\alpha },\quad i (X_{\alpha }+X_{-\alpha })\quad (\alpha \in \Sigma _ {+})$$ | conf 0.691  F
 l05851085.png (85)  | 
Lie algebra, solvable
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 76.(119.)* |  
 | 
$[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ | $[\mathfrak g_i,\mathfrak g_i]\subset \mathfrak g_{i+1}$ | conf 0.276  F
 l05852011.png (11)  | 
| 77.(141.) |  
 | 
$\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ | $\operatorname {dim}\mathfrak g_i=\operatorname {dim}\mathfrak g-i$ | conf 0.901
 l05852046.png (46)  | 
Lie group
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 78.(62.)* |  
 | 
$( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ | $$\operatorname {Aut}(G)\cong \operatorname {Aut}(L(G))\quad {\rm and }\quad L (\operatorname {Aut}(G))\cong D (L(G)),$$ | conf 0.693  F
 l058590115.png (115)  | 
| 79.(50.) |  
 | 
$( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ | $$(X,Y)\rightarrow \operatorname {exp}^{-1}(\operatorname {exp}X\operatorname {exp}Y),\quad X ,Y\in L (G),$$ | conf 0.856
 l05859086.png (86)  | 
Lie group, compact
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 80.(121.)* |  
 | 
$J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ | $$J=\left\| \begin {array}{cc} 0 &{E_x}\\ {-E_x} &0 \end {array} \right\|,$$ | conf 0.364  F
 l05861012.png (12)  | 
Lie group, nilpotent
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 81.(83.) |  
 | 
$N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ | $$N(F)=\{g\in GL (V):gv\equiv v \operatorname {mod}V_i\;\text{for all }v\in V _ i,\;i\geq 1 \}$$ | conf 0.466
 l0586604.png (4)  | 
Lie group, semi-simple
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 82.(35.)* |  
 | 
$L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ | $$L(\mathfrak g)\cong \Gamma _ 0(\mathfrak u)\cap \mathfrak h^{\prime }/\Gamma _ 0([\mathfrak k,\mathfrak k])$$ | conf 0.659  F
 l058680102.png (102)  | 
| 83.(81.)* |  
 | 
$\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ | $$\Gamma _ 1=\Gamma _ 1(g)=\{X\in h :\alpha (X)\in 2 \pi i {\mathbf Z}\;\text{for all }\alpha \in \Sigma \}.$$ | conf 0.183  F
 l05868032.png (32)  | 
Lie p-algebra
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 84.(36.) |  
 | 
$( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ | $$(\operatorname {ad}x)^ny=\sum _ {j=1}^n(-1)^j\left(\begin {array}cn\\ j \end {array} \right)x^{n-j}yx^j$$ | conf 0.356
 l05872026.png (26)  | 
| 85.(99.) |  
 | 
$\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ | $$\pi (x+y)=\pi (x)+\pi (y),\quad \pi (\lambda x )=\lambda ^p\pi (x),\quad \lambda \in k .$$ | conf 0.964
 l05872078.png (78)  | 
Lie theorem
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 86.(134.) |  
 | 
$y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ | $$y_i=f_i(g_1,\ldots ,g_i;x_1,\ldots ,x_n),\quad i =1,\ldots ,n$$ | conf 0.276
 l05876010.png (10)  | 
| 87.(86.) |  
 | 
$X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ | $$X_i=\sum _ {j=1}^n\xi _ {ij}(x)\frac {\partial }{\partial x _ j},\quad i =1,\ldots ,r,$$ | conf 0.656
 l05876016.png (16)  | 
| 88.(66.)* |  
 | 
$\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ | $$\frac {\partial f _ j}{\partial g _ i}(g,x)=\sum _ {k=1}^r\xi _ {kj}(f(g_sx))\psi _ {ki}(g),$$ | conf 0.336  F
 l05876030.png (30)  | 
| 89.(19.)* |  
 | 
$\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ | $$\sum _ {k=1}^N(\xi _ {ik}\frac {\partial \xi _ {jl}}{\partial x _ k}-\xi _ {jk}\frac {\partial \xi _ {il}}{\partial x _ k})=\sum _ {k=1}^rc_{ij}^k\xi _ {kl},$$ | conf 0.157  F
 l05876037.png (37)  | 
| 90.(14.) |  
 | 
$\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ | $$\left.\begin {array}c{c_{ij}^k=-c_{ji}^k},\\ {\displaystyle\sum _ {l=1}^r(c_{il}^mc_{jk}^l+c_{kl}^mc_{ij}^l+c_{jl}^mc_{ki}^l)=0,\quad 1 \leq i ,j,k,l,m\leq r,} \end {array} \right\}$$ | conf 0.085
 l05876052.png (52)  | 
Maximal torus
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 91.(95.) |  
 | 
$F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ | $$F(x_1f_1+\ldots +x_xf_n)=x_1x_n+x_2x_{n-1}+\ldots +x_px_{n-p+1},$$ | conf 0.198
 m06301072.png (72)  | 
Non-Abelian cohomology
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 92.(114.)* |  
 | 
$\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ | $$\phi (g_1)\phi (g_2)\phi (g_1g_2)^{-1}=\operatorname {Int}m(g_1,g_2),$$ | conf 0.443  F
 n066900110.png (110)  | 
| 93.(90.)* |  
 | 
$( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ | $$m'(g_1,g_2)=h(g_1)(\phi (g_1)(h(g_2)))m(g_1,g_2)h(g_1,g_2)^{-1}.$$ | conf 0.764  F
 n066900118.png (118)  | 
| 94.(44.) |  
 | 
$\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ | $$\delta (e)=e\quad \;\text{and }\quad \delta (\rho (a)b)=\sigma (a)\delta (b),\quad \alpha \in C ^0,\quad b \in C ^1,$$ | conf 0.400
 n06690016.png (16)  | 
| 95.(60.)* |  
 | 
$C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ | $$C^{*}(\mathfrak U,{\cal F})=(C^0(\mathfrak U,{\cal F}),C^1(\mathfrak U,{\cal F}),C^2(\mathfrak U,{\cal F})),$$ | conf 0.205  F
 n06690028.png (28)  | 
Picard scheme
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 96.(39.)* |  
 | 
$\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ | $$\operatorname {Pic}_{X/k}(S^{\prime })=\operatorname {Pic}(X\times_k S ^{\prime })/\operatorname {Pic}(S^{\prime })$$ | conf 0.345  F +
 p07267025.png (25)  | 
Principal analytic fibration
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 97.(100.)* |  
 | 
$g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ | $$g_j:U_i\cap U _ j\rightarrow G ,\quad i ,j\in I ,\quad U _ i\cap U _ j\neq \emptyset,$$ | conf 0.184  F
 p07464025.png (25)  | 
Quantum groups
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 98.(101.) |  
 | 
$\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ | $$\phi ^{*}:\mathfrak g^{*}\otimes \mathfrak g^{*}\rightarrow \mathfrak g^{*}$$ | conf 0.837
 q07631062.png (62)  | 
| 99.(108.) |  
 | 
$\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ | $$\delta :U_{\mathfrak g}\rightarrow U _ {\mathfrak g}\otimes U _ {\mathfrak g}$$ | conf 0.648
 q07631071.png (71)  | 
| 100.(56.)* |  
 | 
$\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ | $$\delta (\alpha )=\operatorname {lim}_{h\rightarrow 0 }h^{-1}(\Delta (a)-\Delta ^{\prime }(\alpha ))$$ | conf 0.304  F
 q07631072.png (72)  | 
| 101.(129.)* |  
 | 
$[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ | $$[\alpha ,X_i^{\pm }]=\pm \alpha _ i(\alpha )X_i^{\pm }\quad \text{for }a\in \mathfrak h;$$ | conf 0.544  F
 q07631088.png (88)  | 
| 102.(128.) |  
 | 
$[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ | $$[X_i^{+},X_j^{-}]=2\delta _ {ij}h^{-1}\operatorname {sinh}(hH_i/2).$$ | conf 0.893
 q07631089.png (89)  | 
| 103.(20.) |  
 | 
$\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ | $$\sum _ {k=0}^n(-1)^k\left(\begin {array}ln\\ k \end {array} \right)q^{-k(n-k)/2}(X_i^{\pm })^kX_j^{\pm }\cdot (X_i^{\pm })^{n-k}=0.$$ | conf 0.055
 q07631092.png (92)  | 
| 104.(30.) |  
 | 
$\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ | $$\left( \begin {array}ln\\ k \end {array} \right)_q=\frac {(q^n-1)\ldots (q^{n-k+1}-1)}{(q^k-1)\ldots (q-1)} .$$ | conf 0.443
 q07631095.png (95)  | 
| 105.(21.)* |  
 | 
$\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ | $$\Delta (X_i^{\pm })=X_i^{\pm }\otimes \operatorname {exp}(\frac {hH_i}4)+\operatorname {exp}(\frac {-hH_i}4)\otimes X _ i^{\pm }.$$ | conf 0.212  F
 q07631099.png (99)  | 
Rational representation
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 106.(91.) |  
 | 
$0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ | $$0\leq \frac {2(\chi ,\alpha )}{(\alpha ,\alpha )}<p\quad \text{for all }\alpha \in \Delta.$$ | conf 0.879
 r077630100.png (100)  | 
| 107.(135.) |  
 | 
$\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ | $$\phi _ 0\otimes \phi _ 1^{Fr}\otimes \ldots \otimes \phi _ d^{{Fr}^d},$$ | conf 0.136
 r077630104.png (104)  | 
| 108.(45.)* |  
 | 
$\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ | $$\chi =\delta _ {\phi }-\sum _ {\alpha \in \Delta }m_{\alpha }\alpha ,\quad m _ {\alpha }\in Z ,\quad m _ {\alpha }\geq 0.$$ | conf 0.862  F
 r07763055.png (55)  | 
Singular point
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 109.(31.) |  
 | 
$\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ | $$\sum _ {k_1,\ldots ,k_n=0}^{\infty }c_{k_1\cdots k _ n}(z_1-\zeta _ 1)^{k_1}\ldots (z_n-\zeta _ n)^{k_n}$$ | conf 0.324
 s085590225.png (225)  | 
| 110.(46.) |  
 | 
$\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ | $$\frac {m_1}{n_1}<\frac {m_2}{n_1n_2}<\ldots <\frac {m_g}{n_1\ldots n _ g}=\frac {m_g}n$$ | conf 0.459
 s085590404.png (404)  | 
| 111.(115.)* |  
 | 
$p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ | $$p(Z)=1-\operatorname {dim}H^0({\mathbf Z},{\cal O}_{\mathbf Z })+\operatorname {dim}H^1({\mathbf Z},{\cal O}_{\mathbf Z })$$ | conf 0.997  F
 s085590429.png (429)  | 
| 112.(136.)* |  
 | 
$X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ | $$X_{\epsilon }=\{(x_0,\ldots ,x_x):f(x_0,\ldots ,x_x)=\epsilon \}$$ | conf 0.433  F
 s085590440.png (440)  | 
| 113.(12.) |  
 | 
$= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ | $$=\left\{ \begin {array}{ll} {(x+\lambda )^2\ldots (x+k\lambda )^2} &{\text{ if }\mu =2k,}\\ {(x+\lambda )^2\ldots (x+k\lambda )^2(x+(k+1)\lambda )} &{\text{ if }\mu =2k+1,} \end {array} \right.$$ | conf 0.870
 s085590458.png (458)  | 
| 114.(75.) |  
 | 
$( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ | $$\big(\frac {\partial F (x,y,\lambda )}{\partial x },\frac {\partial F (x,y,\lambda )}{\partial y }\big)$$ | conf 0.986
 s085590482.png (482)  | 
| 115.(137.) |  
 | 
$\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ | $$\frac {dx_i}{dx_{i_0}}=f_i(x),\quad f _ i\in C (U),\quad i \neq i _ 0.$$ | conf 0.594
 s085590515.png (515)  | 
| 116.(142.)* |  
 | 
$A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ | $$A=\left\| \begin {array}{ll} {\alpha } &b\\ c &e \end {array} \right\|$$ | conf 0.506  F
 s085590527.png (527)  | 
| 117.(53.) |  
 | 
$\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ | $$\Delta =(F_{xx}^{\prime \prime })_0(F_{yy}^{\prime \prime })_0-(F_{xy}^{\prime \prime })_0^2$$ | conf 0.920
 s085590634.png (634)  | 
| 118.(16.)* |  
 | 
$\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ | $$\left\| \begin {array}{lll} {F_x^{\prime }} &{F_y^{\prime }} &{F_z^{\prime }}\\ {G_x^{\prime }} &{G_y^{\prime }} &{G_Z^{\prime }} \end {array} \right\|$$ | conf 0.230  F
 s085590645.png (645)  | 
| 119.(92.) |  
 | 
$( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ | $$(F_x^{\prime })_0=0,\quad (F_y^{\prime })_0=0,\quad (F_z^{\prime })_0=0.$$ | conf 0.300
 s085590653.png (653)  | 
Solv manifold
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 120.(138.) |  
 | 
$\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ | $$\{e\}\rightarrow \Delta \rightarrow \pi \rightarrow {\mathbf Z}^s\rightarrow \{e\}$$ | conf 0.972
 s08610054.png (54)  | 
Stability theorems in algebraic K-theory
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 121.(71.) |  
 | 
$\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ | $$\psi _ {t_1,\ldots ,t_n}^{\prime }:SK_1(R)\rightarrow S K _ 1(R(t_1,\ldots ,t_n)).$$ | conf 0.379
 s08706033.png (33)  | 
Steinberg module
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 122.(130.) |  
 | 
$e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ | $$e=\frac {|U|}{|G|}\big(\sum _ {b\in B }b\big)\big(\sum _ {w\in W }\operatorname {sign}(w)w\big)$$ | conf 0.138
 s13053016.png (16)  | 
Steinberg symbol
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 123.(24.)* |  
 | 
$( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ | $$(x_{ij}(a),x_{kl}(b))=\left\{ \begin {array}{ll} 1 &{\text{ if }i\neq l ,j\neq k },\\ {x_{il}(ab)} &{\text{ if }i\neq l ,j=k}. \end {array} \right.$$ | conf 0.381  F
 s13054017.png (17)  | 
Tilting theory
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 124.(84.) |  
 | 
$0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ | $$0\rightarrow \Lambda \rightarrow T _ 1\rightarrow \ldots \rightarrow T _ n\rightarrow 0 $$ | conf 0.946
 t130130105.png (105)  | 
Tits quadratic form
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 125.(18.) |  
 | 
$q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ | $$q_R(x)=\sum _ {j\in Q _ 0}x_j^2-\sum _ {\langle \beta :i\rightarrow j )\in Q _ 1}x_ix_j+\sum _ {\langle \beta :i\rightarrow j )\in Q _ 1}r_{i,j}x_ix_j,$$ | conf 0.112
 t130140104.png (104)  | 
| 126.(40.) |  
 | 
$[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ | $$[X]\mapsto \chi _ R([X])=\sum _ {m=0}^{\infty }(-1)^m\operatorname {dim}_K\operatorname {Ext}_R^m(X,X)$$ | conf 0.116
 t130140118.png (118)  | 
| 127.(132.)* |  
 | 
$\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ | $$\underline {\dim }:K_0(\operatorname {mod}R)\rightarrow {\mathbf Z}^{Q_0}$$ | conf 0.287 F
 t130140119.png (119)  | 
| 128.(37.)* |  
 | 
$q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ | $$q_I(x)=\sum _ {i\in I }x_i^2+\sum _ {i\prec j \atop j\in I\setminus {\rm max}I}x_ix_j-\sum _ {p\in \operatorname {max}I}\big(\sum _ {i\prec p }x_i\big)x_p$$ | conf 0.197  F
 t130140140.png (140)  | 
| 129.(131.)* |  
 | 
$X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ | $$X\mapsto \underline {\dim }X=(\operatorname {dim}_KX_j)_{j\in Q _ 0}$$ | conf 0.819  F
 t13014044.png (44)  | 
| 130.(25. |  
 | 
$[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ | $$[X]\mapsto \chi _ Q([X])=\operatorname {dim}_K\operatorname {End}_Q(X)-\operatorname {dim}_K\operatorname {Ext}_Q^1(X,X)$$ | conf 0.661
 t13014048.png (48)  | 
| 131.(38.)* |  
 | 
$A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ | $$A_Q(v)=\prod _ {i,j\in Q _ 0}\prod _ {\langle \beta :j\rightarrow i \rangle \in Q _ 1}M_{v_i\times v _ j}(K)_{\beta }$$ | conf 0.481  F
 t13014056.png (56)  | 
| 132.(139.)* |  
 | 
$\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ | $$q_Q(x)=\sum _ {j\in Q _ 0}x_j^2-\sum _ {i,j\in Q _ 0}d_{ij}x_ix_j,$$ | conf 0.648  F
 t1301406.png (6)  | 
Torus
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 133.(41.)* |  
 | 
$r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ | $$r=\alpha \operatorname {sin}u{\bf k}+l(1+\epsilon \operatorname {cos}u)({\bf i}\operatorname {cos}v+{\bf j}\operatorname {sin}v)$$ | conf 0.585  F
 t0933502.png (2)  | 
| 134.(122.)* |  
 | 
$d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ | $$ds^2=\alpha ^2du^2+l^2(1+\epsilon \operatorname {cos}u)^2dv^2,$$ | conf 0.696  F
 t0933507.png (7)  | 
Uniform distribution
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 135.(9.) |  
 | 
$u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ | $$u_3(x)=\left\{ \begin {array}{ll} {\frac {x^2}2,} &{0\leq x <1,}\\ {\frac {[x^2-3(x-1)^2]}2,} &{1\leq x <2,}\\ {\frac {[x^2-3(x-1)^2+3(x-2)^2]}2,} &{2\leq x <3,}\\ {0,} &{x\notin [0,3].} \end {array} \right.$$ | conf 0.733
 u09524027.png (27)  | 
| 136.(32.)* |  
 | 
$p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ | $$p(x)=\left\{ \begin {array}{ll} {\frac 1{b-\alpha },} &{x\in [\alpha ,b],}\\ {0,} &{x\notin [\alpha ,b].} \end {array} \right.$$ | conf 0.681  F
 u0952403.png (3)  | 
| 137.(34.) |  
 | 
$u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ | $$u_n(x)=\frac 1{(n-1)!}\sum _ {k=0}^n(-1)^k\left(\begin {array}ln\\ k \end {array} \right)(x-k)_{+}^{n-1}$$ | conf 0.569
 u09524030.png (30)  | 
| 138.(109.) |  
 | 
$z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ | $$z_{+}=\left\{ \begin {array}{ll} {z,} &{z>0}.\\ {0,} &{z\leq 0 }. \end {array} \right.$$ | conf 0.676
 u09524034.png (34)  | 
| 139.(43.) |  
 | 
$F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ | $$F(x)=\left\{ \begin {array}{ll} {0,} &{x\leq a },\\ {\frac {x-a}{b-a},} &{a<x\leq b },\\ {1,} &{x>b}, \end {array} \right.$$ | conf 0.468
 u0952407.png (7)  | 
| 140.(47.) |  
 | 
$p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ | $$p(x_1,\ldots ,x_n)=\left\{ \begin {array}{ll} {C\neq 0 ,} &{x\in D },\\ {0,} &{x\notin D }, \end {array} \right.$$ | conf 0.705
 u09524072.png (72)  | 
Unipotent group
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 141.(143.) |  
 | 
$\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ | $$\{g\in \operatorname {GL}(V):(1-g)^n=0\},\quad n =\operatorname {dim}V,$$ | conf 0.287
 u0954106.png (6)  | 
Weyl module
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 142.(51.) |  
 | 
$\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ | $$\operatorname {diag}(t_1,\ldots ,t_n)\mapsto t _ 1^{\lambda _ 1}\ldots t _ n^{\lambda _ n}\in K,$$ | conf 0.507
 w120090122.png (122)  | 
| 143.(54.)* |  
 | 
$\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ | $$\chi _ {\lambda }=\sum _ {\mu \in \Lambda (n)}\operatorname {dim}_K(\Delta (\lambda )^{\mu })_{e_{\mu }},$$ | conf 0.461  F
 w120090135.png (135)  | 
| 144.(110.) |  
 | 
$\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ | $$\mathfrak B=\{e_{\pm }\alpha ,h_{\beta }:\alpha \in \Phi ^{+},\beta \in \Sigma \}.$$ | conf 0.381
 w120090259.png (259)  | 
| 145.(82.) |  
 | 
$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ | $$\left( \begin {array}ch\\ i \end {array} \right)=\frac {h(h-1)\ldots (h-i+1)}{i!} $$ | conf 0.487
 w120090342.png (342)  | 
| 146.(28.)* |  
 | 
$\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ | $$\mathfrak S_{\{1,\ldots ,\lambda _ 1\}}\times \mathfrak S_{\{\lambda _ 1+1,\ldots ,\lambda _ 1+\lambda _ 2\}}\times \dots $$ | conf 0.312  F
 w12009095.png (95)  | 
| 147.(104.) |  
 | 
$\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ | $$\ldots \times \mathfrak S_{\{\lambda _ 1+\ldots +\lambda _ {n-1}+1,\ldots ,r\}},$$ | conf 0.259
 w12009096.png (96)  | 
Witt vector
| Nr. | Image of png File | $\TeX$, automatically generated version | $\TeX$, manually corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 148.(87.)* |  
 | 
$\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ | $$\langle \alpha ><b\rangle =\langle \alpha b \rangle ,\quad \langle {\bf 1}\rangle ={\bf f}_1={\bf V}_1=\text{ unit element}1,$$ | conf 0.351  F
 w098100172.png (172)  | 
| 149.(123.)* |  
 | 
$\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ | $$\langle \alpha +b\rangle =\sum _ {n=1}^{\infty }{\bf V}_n\langle r _ n(\alpha ,b){\bf f}_n.$$ | conf 0.143  F
 w098100177.png (177)  | 
| 150.(102.) |  
 | 
$\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ | $$\sigma (\alpha _ 1,\alpha _ 2,\ldots )=(\alpha _ 1^p,\alpha _ 2^p,\ldots )$$ | conf 0.771
 w098100190.png (190)  | 
Ulf Rehmann/Table of automatically generated TeX code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/Table_of_automatically_generated_TeX_code&oldid=44161