Difference between revisions of "Hardy-Ramanujan theorem"
(Tex done) |
m (→References: zbl link) |
||
(One intermediate revision by one other user not shown) | |||
Line 32: | Line 32: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.D.T.A. Elliott, "Probabilistic number theory" , '''I–II''' , Springer (1979-1980)</TD></TR> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.D.T.A. Elliott, "Probabilistic number theory" , '''I–II''' , Springer (1979-1980) {{ZBL|0431.10029}}{{ZBL|0431.10030}}</TD></TR> |
− | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös, "On the distribution function of additive functions" ''Ann. of Math.'' , '''47''' (1946) pp. 1–20</TD></TR> | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Erdös, "On the distribution function of additive functions" ''Ann. of Math.'' , '''47''' (1946) pp. 1–20 {{ZBL|0061.07902}}</TD></TR> |
− | <TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Galambos, "The sequences of prime divisors of integers" ''Acta Arith.'' , '''31''' (1976) pp. 213–218</TD></TR> | + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Galambos, "The sequences of prime divisors of integers" ''Acta Arith.'' , '''31''' (1976) pp. 213–218 {{ZBL|0303.10039}}</TD></TR> |
− | <TR><TD valign="top">[a4]</TD> <TD valign="top"> R.R. Hall, G. Tenenbaum, "Divisors" , ''Tracts in Math.'' , '''90''' , Cambridge Univ. Press (1988)</TD></TR> | + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> R.R. Hall, G. Tenenbaum, "Divisors" , ''Tracts in Math.'' , '''90''' , Cambridge Univ. Press (1988){{ZBL|0653.10001}}</TD></TR> |
− | <TR><TD valign="top">[a5]</TD> <TD valign="top"> G.H. Hardy, S. Ramanujan, "The normal number of prime factors of a number $n$" ''Quart. J. Math.'' , '''48''' (1917) pp. 76–92</TD></TR> | + | <TR><TD valign="top">[a5]</TD> <TD valign="top"> G.H. Hardy, S. Ramanujan, "The normal number of prime factors of a number $n$" ''Quart. J. Math.'' , '''48''' (1917) pp. 76–92 {{ZBL|46.0262.03}}</TD></TR> |
− | <TR><TD valign="top">[a6]</TD> <TD valign="top"> G. Tenenbaum, "Introduction to analytic and probabilistic number theory" , | + | <TR><TD valign="top">[a6]</TD> <TD valign="top"> G. Tenenbaum, "Introduction to analytic and probabilistic number theory" , Graduate Studies in Mathematics 163, Amer. Math. Soc. 2015. {{ZBL|1336.11001}}</TD></TR> |
</table> | </table> | ||
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 07:30, 18 March 2023
(on the normal number of prime factors of an integer)
For any integer $n \ge 2$, let $\omega(n)$ denote the number of distinct prime factors of $n$. The Hardy–Ramanujan theorem [a5] states that the function $\omega(n)$ has normal order $\log\log n$ in the sense that, given any $\epsilon > 0$, almost all positive integers $n$ satisfy $$ |\omega(n) - \log\log n| < \epsilon \log\log n \ . $$
Here, "almost all" means that the number of positive integers $n \le x$ for which the indicated property holds is asymptotically equal to $x$ as $x\rightarrow\infty$. A stronger, and best-possible, version of this result shows that, given any real-valued function $\psi(n)$ tending to infinity as $n\rightarrow\infty$, almost all positive integers $n$ satisfy $$ |\omega(n) - \log\log n| < \psi(n) \sqrt{\log\log n} \ . $$
The same estimate holds for the function $\Omega(n)$, the total number of prime factors of $n$, i.e., the number of prime factors of $n$ counted with multiplicity.
The Hardy–Ramanujan theorem led to the development of probabilistic number theory, a branch of number theory in which properties of integers are studied from a probabilistic point of view (see [a1] or [a6] for a general reference and also Number theory, probabilistic methods in). One of the main theorems in this area, and a far-reaching generalization of the Hardy–Ramanujan theorem, is the Erdös–Kac theorem, which states that the functions $f=\omega$ and $f=\Omega$ (and, in fact, a large class of additive arithmetic functions $f$ satisfy $$ \lim_{x\rightarrow\infty}\frac{1}{x} \sharp\left\lbrace{ n \le x : f(n) \le \log\log n + t \sqrt{\log\log n} }\right\rbrace = \frac{1}{2\pi} \int_{-\infty}^t e^{-x^2/2} dx\ \ \ (\,t \in \mathbf{R}\,) \ . $$
This shows that the values of $\omega(n)$ and $\Omega(n)$ are, in a sense, normally distributed with mean $\log\log n$ and standard deviation $\sqrt{\log\log n}$ (cf. also Normal distribution).
Another generalization of the Hardy–Ramanujan theorem, due to P. Erdös ([a2]; see also [a4], Chapt. 1), describes the size of the prime factors of a random integer. For $n\ge2$, let $p_1(n) < p_2(n) < \ldots < p_{\omega(n)}(n)$ denote the sequence of distinct prime factors of $n$. Let $\epsilon>0$ be given, and let $\psi(n)$ be a function tending arbitrarily slowly to infinity as $n \rightarrow\infty$. Then, for almost-all positive integers $n$, the inequalities $$ |\log\log p_j(n) - j| < (1+\epsilon) \sqrt{2j\log\log j} \ , $$ $$ \psi(n) < j \le \omega(n)$ $$ hold. A related result, due to J. Galambos [a3], is that the numbers $p_j(n)$ are, in a suitable sense, normally distributed with mean $j$ and standard deviation $\sqrt j$; see [a3].
References
[a1] | P.D.T.A. Elliott, "Probabilistic number theory" , I–II , Springer (1979-1980) Zbl 0431.10029Zbl 0431.10030 |
[a2] | P. Erdös, "On the distribution function of additive functions" Ann. of Math. , 47 (1946) pp. 1–20 Zbl 0061.07902 |
[a3] | J. Galambos, "The sequences of prime divisors of integers" Acta Arith. , 31 (1976) pp. 213–218 Zbl 0303.10039 |
[a4] | R.R. Hall, G. Tenenbaum, "Divisors" , Tracts in Math. , 90 , Cambridge Univ. Press (1988)Zbl 0653.10001 |
[a5] | G.H. Hardy, S. Ramanujan, "The normal number of prime factors of a number $n$" Quart. J. Math. , 48 (1917) pp. 76–92 Zbl 46.0262.03 |
[a6] | G. Tenenbaum, "Introduction to analytic and probabilistic number theory" , Graduate Studies in Mathematics 163, Amer. Math. Soc. 2015. Zbl 1336.11001 |
Hardy-Ramanujan theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy-Ramanujan_theorem&oldid=43121