Namespaces
Variants
Actions

Difference between revisions of "Baer ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Baer ring)
 
(→‎References: isbn link)
 
Line 6: Line 6:
  
 
====References====
 
====References====
* Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics '''189''' Springer (2012) ISBN 1461205255 {{ZBL|0911.16001}}
+
* Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics '''189''' Springer (2012) {{ISBN|1461205255}} {{ZBL|0911.16001}}
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 14:22, 12 November 2023

A Baer ring is a ring $R$ in which every left annihilator is generated by an idempotent $e$. The analogous definition in terms of right annihilators is equivalent . A Baer ring is necessarily a left and a right Rickart ring.

Examples of Baer rings include integral domains, and matrix rings over a field.

See also: Baer semi-group.

References

  • Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics 189 Springer (2012) ISBN 1461205255 Zbl 0911.16001
How to Cite This Entry:
Baer ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baer_ring&oldid=42108