Difference between revisions of "Join-irreducible element"
(Start article: Join-irreducible element) |
(→References: isbn link) |
||
Line 10: | Line 10: | ||
====References==== | ====References==== | ||
− | * B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1 {{ZBL|1002.06001}} | + | * B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) {{ISBN|978-0-521-78451-1}} {{ZBL|1002.06001}} |
− | * Rota, Gian-Carlo (with P. Doubilet, C. Greene, D. Kahaner, A: Odlyzko and R. Stanley) ''Finite operator calculus'' Academic Press (1975) ISBN 0-12-596650-4 {{ZBL|0328.05007}} | + | * Rota, Gian-Carlo (with P. Doubilet, C. Greene, D. Kahaner, A: Odlyzko and R. Stanley) ''Finite operator calculus'' Academic Press (1975) {{ISBN|0-12-596650-4}} {{ZBL|0328.05007}} |
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 15:00, 19 November 2023
in a lattice $L$
An element $a$ which is not the minimum element $0_L$ (if any) and for which $x < a$ and $y < a$ implies $x \vee y < a$. The latter condition is equivalent to $a = x \vee y$ implies $a = x$ or $a = y$.
Dually, a meet-irreducible element $t$ is not the maximum element $1_L$ if any and $t < x,\,t<y \Rightarrow t < x \wedge y$ or $t = x \wedge y \Rightarrow t = x \,\text{or}\, t = y$. An element which is both join-irreducible and meet-irredicuble is doubly-irreducible.
In a lattice satisfying the descending chain condition, in particular for a finite lattice, the join-irreducible elements are those which cover precisely one element; further, every element is a join of join-irreducible elements.
In the lattice of natural numbers ordered by divisibility, the join-irreducible elements are the prime powers.
References
- B. A. Davey, H. A. Priestley, Introduction to lattices and order, 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1 Zbl 1002.06001
- Rota, Gian-Carlo (with P. Doubilet, C. Greene, D. Kahaner, A: Odlyzko and R. Stanley) Finite operator calculus Academic Press (1975) ISBN 0-12-596650-4 Zbl 0328.05007
Join-irreducible element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Join-irreducible_element&oldid=38971