|
|
(8 intermediate revisions by the same user not shown) |
Line 9: |
Line 9: |
| Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. [[K-theory|$K$-theory]]), and the complex representation ring $R(G)$ of a finite group $G$ (cf. [[Representation of a compact group]]). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$. | | Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. [[K-theory|$K$-theory]]), and the complex representation ring $R(G)$ of a finite group $G$ (cf. [[Representation of a compact group]]). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$. |
| | | |
− | Let $R$ be any commutative ring with unit element 1. Consider the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701027.png" /> of power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701028.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701029.png" /> with constant term 1. Multiplication of power series turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701030.png" /> into an Abelian group. A pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701031.png" />-ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701032.png" /> defines a homomorphism of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701034.png" />, and vice versa. | + | Let $R$ be any commutative ring with unit element 1. Consider the set $\Lambda(R) = 1 + t R[[t]]$ of power series in $t$ over $R$ with constant term 1. Multiplication of power series turns $\Lambda(R)$ into an Abelian group. A pre-$\lambda$-ring structure on $\Lambda(R)$ defines a homomorphism of Abelian groups $\lambda_t : R \rightarrow \Lambda(R)$, $\lambda_t(x) = \lambda^0(x) + \lambda^1(x) t + \lambda^2(x) t^2 + \cdots$, and vice versa. |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701036.png" /> be two elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701037.png" />. Formally, write
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701038.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701039.png" /></td> </tr></table>
| |
| | | |
| + | Let $\alpha(t) = 1 + a_1 t + a_2 t^2 + \cdots$, $\beta(t) = 1 + b_1 t + b_2 t^2 + \cdots$ be two elements of $\Lambda(R)$. Formally, write |
| + | $$ |
| + | \alpha(t) = \prod_{i=1}^\infty \left({ 1 - \xi_i t }\right) |
| + | $$ |
| + | $$ |
| + | \beta(t) = \prod_{i=1}^\infty \left({ 1 - \eta_i t }\right) |
| + | $$ |
| and consider the expressions | | and consider the expressions |
| + | $$ |
| + | \prod_{i,j=1}^\infty \left({ 1 - \xi_i \eta_j t }\right) = 1 + P_1 t + P_2 t^2 + \cdots \ , |
| + | $$ |
| + | $$ |
| + | \prod_{i_1 < i_2 < \cdots < i_n}^\infty \left({ 1 - \xi_{i_1} \xi_{i_2} \cdots \xi_{i_n} t }\right) = 1 + L_{1,n} t + L_{2,n} t^2 + \cdots \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701040.png" /></td> </tr></table>
| + | The $P_i$ and $L_{i,n}$ are symmetric polynomial expressions in the $\xi$'s and $\eta$'s and hence can be written as universal polynomial expressions in the $a$'s and $b$'s. Now define a multiplication on $\Lambda(R)$ by |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701041.png" /></td> </tr></table>
| + | \alpha(t) * \beta(t) = 1 + P_1(a,b) t + P_2(a,b) t^2 + \cdots |
| + | $$ |
| + | ($a = (a_1,a_2,\ldots)$, $b = (b_1,b_2,\ldots)$), and define operations (mappings) $\lambda^n : \Lambda(R) \rightarrow \Lambda(R)$ by |
| + | $$ |
| + | \lambda^n \alpha(t) = 1 + L_{1,n}(a,b) t + L_{2,n}(a,b) t^2 + \cdots \ . |
| + | $$ |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701043.png" /> are symmetric polynomial expressions in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701044.png" />'s and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701045.png" />'s and hence can be written as universal polynomial expressions in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701046.png" />'s and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701047.png" />'s. Now define a multiplication on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701048.png" /> by | + | The ring $\Lambda(R)$ with these operations is a pre-$\lambda$-ring. Given two pre-$\lambda$-rings $R_1$, $R_2$, a $\lambda$-ring homomorphism $\phi : R_1 \rightarrow R_2$ is a homomorphism of rings such that $\phi(\lambda^n(x)) = \lambda^n(\phi(x))$ for all $x \in R_1$, $n = 0,1,2,\ldots$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701049.png" /></td> </tr></table>
| + | A pre-$\lambda$-ring $R$ is a $\lambda$-ring if $\lambda_{-t} : R \rightarrow \Lambda(R)$, $\lambda_{-t}(x) = 1 - \lambda^1(x) t + \lambda^2(x) t^2 - \cdots$, is a homomorphism of pre-$\lambda$-rings. The ring $\Lambda(R)$ is always a $\lambda$-ring and so are the standard examples $K(M)$, $K_G(M)$, $R(G)$ of pre-$\lambda$-rings mentioned above. |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701051.png" />), and define operations (mappings) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701052.png" /> by
| + | On the other hand, consider a finite group $G$. A finite $G$-set is a finite set together with a [[group action]] of $G$. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite $G$-sets form a [[semi-ring]], $A^+(G)$. The associated [[Grothendieck ring]] $A(G)$ is called the ''Burnside ring''. On $A^+(G)$, define operations $\lambda^n : A^+(G) \rightarrow A^+(G)$ by taking $\lambda^n(S)$ to be the set of$n$-element subsets of $S$ with the natural induced $G$-action. This generalizes the $\lambda$-operations $\lambda^n$ on $\mathbf{N} \subset \mathbf{Z}$, $\lambda^n(m) = \binom{m}{n}$. Using iii), the $\lambda^n$ extend to $A(G)$, making the Burnside ring into a pre-$\lambda$-ring. As a rule this pre-$\lambda$-ring is not a $\lambda$-ring, [[#References|[a9]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701053.png" /></td> </tr></table>
| + | Instead of pre-$\lambda$-ring and $\lambda$-ring one also finds, respectively, the phrases $\lambda$-ring and special $\lambda$-ring in the literature. |
| | | |
− | The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701054.png" /> with these operations is a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701055.png" />-ring. Given two pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701056.png" />-rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701058.png" />, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701059.png" />-ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701060.png" /> is a homomorphism of rings such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701061.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701063.png" />.
| + | Let $R$ be a pre-$\lambda$-ring. One defines new operations $\psi^i : R \rightarrow R$ by the formula |
| + | $$ |
| + | -t \frac{d}{dt} \log \lambda_{-t} (x) = \sum_{i=1}^\infty \psi^i(x) t^i \ . |
| + | $$ |
| | | |
− | A pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701064.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701065.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701067.png" />-ring if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701068.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701069.png" />, is a homomorphism of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701070.png" />-rings. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701071.png" /> is always a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701072.png" />-ring and so are the standard examples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701075.png" /> of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701076.png" />-rings mentioned above.
| + | These operations are called the ''Adams operations'' on the pre-$\lambda$-ring $R$. They were introduced in the case $R = K(M)$ by J.F. Adams ([[#References|[a10]]]). |
− | | |
− | On the other hand, consider a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701077.png" />. A finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701079.png" />-set is a finite set together with an action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701080.png" /> on it. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701081.png" />-sets form a [[Semi-ring|semi-ring]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701082.png" />. The associated Grothendieck ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701083.png" /> (cf. [[Grothendieck group|Grothendieck group]]) is called the Burnside ring. On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701084.png" />, define operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701085.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701086.png" />(set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701087.png" />-element subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701088.png" />) (with the natural induced <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701089.png" />-action). This generalizes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701090.png" />-operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701091.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701092.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701093.png" />. Using iii), the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701094.png" /> extend to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701095.png" />, making the Burnside ring into a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701096.png" />-ring. As a rule this pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701097.png" />-ring is not a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701098.png" />-ring, [[#References|[a9]]].
| |
− | | |
− | Instead of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701099.png" />-ring and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010100.png" />-ring one also finds, respectively, the phrases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010101.png" />-ring and special <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010103.png" />-ring in the literature.
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010104.png" /> be a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010105.png" />-ring. One defines new operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010106.png" /> by the formula
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010107.png" /></td> </tr></table>
| |
− | | |
− | These operations are called the Adams operations on the pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010108.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010109.png" />. They were introduced in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010110.png" /> by J.F. Adams ([[#References|[a10]]]). | |
| | | |
| The Adams operations satisfy | | The Adams operations satisfy |
| | | |
− | iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010111.png" />; | + | iv) $\Psi^1(x) = x$; |
− | | |
− | v) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010112.png" />.
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010113.png" /> be a torsion-free pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010114.png" />-ring; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010115.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010116.png" />-ring if and only if the Adams operations satisfy in addition
| |
− | | |
− | vi) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010117.png" />;
| |
− | | |
− | vii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010118.png" />;
| |
− | | |
− | viii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010119.png" />.
| |
| | | |
− | A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010120.png" /> with operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010121.png" /> satisfying iv)–viii) is sometimes called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010123.png" />-ring.
| + | v) $\Psi^n(x+y) = \Psi^n(x) + \Psi^n(y)$. |
| | | |
− | The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010124.png" /> is isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010125.png" /> of (big) Witt vectors (cf. (the editorial comments to) [[Witt vector|Witt vector]]):
| + | Let $R$ be a torsion-free pre-$\lambda$-ring; then $R$ is a $\lambda$-ring if and only if the Adams operations satisfy in addition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010126.png" /></td> </tr></table>
| + | vi) $\Psi^i(1) = 1$; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010127.png" /></td> </tr></table>
| + | vii) $\Psi^n(xy) = \Psi^n(x) \Psi^n(y)$; |
| | | |
− | Under this isomorphism the Adams operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010128.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010129.png" /> correspond to the Frobenius operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010130.png" />.
| + | viii) $\Psi^{ij}(x) = \Psi^i(\Psi^j(x))$. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010131.png" />-structures on the rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010132.png" /> define a functorial morphism of ring-valued functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010133.png" />. Together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010134.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010135.png" />, this defines a co-triple structure on the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010136.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010137.png" />-rings are precisely the co-algebras of this co-triple (cf. [[Triple|Triple]]).
| + | A ring $R$ with operations $\Psi^i$ satisfying iv)–viii) is sometimes called a ''$\Psi$-ring''. |
| | | |
− | Via the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010138.png" /> one finds "exponential homomorphisms"
| + | The ring $\Lambda(R)$ is isomorphic to the ring $W(R)$ of (big) Witt vectors (cf. (the editorial comments to) [[Witt vector|Witt vector]]): |
| + | $$ |
| + | \bar E : W(R) \rightarrow \Lambda(R) |
| + | $$ |
| + | $$ |
| + | (a_1,a_2,\ldots) \mapsto \prod_{i=1}^\infty \left({ 1 - a_i t^i }\right) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010139.png" /></td> </tr></table>
| + | Under this isomorphism the Adams operations $\Psi^n$ on $\Lambda(R)$ correspond to the Frobenius operations $\mathbf{f}_n : W(R) \rightarrow W(R)$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010140.png" /></td> </tr></table>
| + | The $\lambda$-structures on the rings $\Lambda(R)$ define a functorial morphism of ring-valued functors $\lambda_{-t}(\cdot) : \Lambda(\cdot) \rightarrow \Lambda(\Lambda(\cdot)) $. Together with $\Lambda(R) \rightarrow R$, $1 + a_1 t + a_2 t^2 + \cdots \mapsto a_1$, this defines a [[co-triple]] structure on the functor $\Lambda$, and the $\lambda$-rings are precisely the [[co-algebra]]s of this co-triple. |
| | | |
| + | Via the isomorphism $\bar E$ one finds "exponential homomorphisms" |
| + | $$ |
| + | E : W(R) \rightarrow W(W(R)) |
| + | $$ |
| + | $$ |
| + | E' : W(R) \rightarrow \Lambda(W(R)) |
| + | $$ |
| which should be seen as (generalizing) the so-called [[Artin–Hasse exponential]] ([[#References|[a11]]], [[#References|[a12]]]). | | which should be seen as (generalizing) the so-called [[Artin–Hasse exponential]] ([[#References|[a11]]], [[#References|[a12]]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010141.png" /> be the ring homomorphism | + | Let $w_n(R) : W(R) \rightarrow R$ be the ring homomorphism |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010142.png" /></td> </tr></table>
| + | w_n (a_1,a_2,\ldots) = \sum_{d|n} d a_d^{n/d} \ . |
− | | + | $$ |
− | Then the Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010143.png" /> is functorially characterized by | + | Then the Artin–Hasse exponential $E(R) : W(R) \rightarrow W(W(R))$ is functorially characterized by |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010144.png" /></td> </tr></table>
| + | w_n(W(R)) \circ E(R) = \mathbf{f}_n(R) |
− | | + | $$ |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010145.png" /> is the Frobenius homomorphism. | + | where $\mathbf{f}_n$ is the Frobenius homomorphism. |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010146.png" /> be the forgetful functor. Then the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010147.png" /> is right adjoint (cf. [[Adjoint functor|Adjoint functor]]) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010148.png" />:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010149.png" /></td> </tr></table>
| |
| | | |
| + | Let $V : \lambda\textsf{-Ring} \rightarrow \textsf{Ring}$ be the forgetful functor. Then the functor $\Lambda : \textsf{Ring} \rightarrow \lambda\textsf{-Ring}$ is right adjoint (cf. [[Adjoint functor]]) to $V$: |
| + | $$ |
| + | \textsf{Ring}(V(S),R) \equiv \lambda\textsf{-Ring}(S,\Lambda(R)) |
| + | $$ |
| (cf. [[#References|[a5]]], p. 20). | | (cf. [[#References|[a5]]], p. 20). |
| | | |
− | There are (besides the identity) three natural automorphisms of the Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010150.png" />, given by the substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010151.png" />, the "inversion" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010152.png" />, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010153.png" />; the corresponding unit elements are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010154.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010155.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010156.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010157.png" />. All four occur in the literature. The most frequently occurring have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010158.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010159.png" /> as their unit element — here, in the above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010160.png" /> is the unit element —, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010161.png" /> seems to be the most rare case. | + | There are (besides the identity) three natural automorphisms of the Abelian group $\Lambda(R) = 1 + t R[[t]]$, given by the substitution $t \mapsto -t$, the "inversion" $\alpha(t) \mapsto \alpha(t)^{-1}$, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on $\Lambda(R)$; the corresponding unit elements are $1-t$, $1+t$, $(1-t)^{-1}$, $(1+t)^{-1}$. All four occur in the literature. The most frequently occurring have $1-t$ or $1+t$ as their unit element — here, in the above, $1-t$ is the unit element —, and $(1+t)^{-1}$ seems to be the most rare case. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010162.png" />-rings were introduced by A. Grothendieck in an algebraic-geometric setting [[#References|[a2]]] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([[#References|[a1]]]).
| + | $\lambda$-rings were introduced by A. Grothendieck in an algebraic-geometric setting [[#References|[a2]]] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([[#References|[a1]]]). |
| | | |
− | In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010163.png" /> is one-dimensional, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010164.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010165.png" />, the terminology derives from the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010166.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010167.png" />; one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010168.png" />, whence the name power operations for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010169.png" />. On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010170.png" /> the operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010171.png" /> are directly defined by | + | In case $x \in R$ is one-dimensional, i.e. $\lambda^n(x) = 0$ for $n \ge 2$, the terminology derives from the case $R = K(M)$ or $R = R(G)$; one has $\Psi^n(x) = x^n$, whence the name ''power operations'' for the $\Psi^n$. On the $\Lambda(R)$ the operations $\Psi^n$ are directly defined by |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010172.png" /></td> </tr></table>
| + | \Psi^n \left({ \prod_{i=1}^\infty (1 - \xi_i t) }\right) = \prod_{i=1}^\infty (1 - \xi_i^n t) \ . |
| + | $$ |
| | | |
| ====References==== | | ====References==== |
Line 114: |
Line 123: |
| <TR><TD valign="top">[a8]</TD> <TD valign="top"> T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) {{MR|}} {{ZBL|0445.57023}} </TD></TR> | | <TR><TD valign="top">[a8]</TD> <TD valign="top"> T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) {{MR|}} {{ZBL|0445.57023}} </TD></TR> |
| <TR><TD valign="top">[a9]</TD> <TD valign="top"> C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" ''Math. Z.'' , '''146''' (1976) pp. 223–238 {{MR|0390035}} {{ZBL|0306.20011}} </TD></TR> | | <TR><TD valign="top">[a9]</TD> <TD valign="top"> C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" ''Math. Z.'' , '''146''' (1976) pp. 223–238 {{MR|0390035}} {{ZBL|0306.20011}} </TD></TR> |
− | <TR><TD valign="top">[a10]</TD> <TD valign="top"> J.F. Adams, "Vectorfields on spheres" ''Ann. of Math.'' , '''75''' (1962) pp. 603–632</TD></TR> | + | <TR><TD valign="top">[a10]</TD> <TD valign="top"> J.F. Adams, "Vectorfields on spheres" ''Ann. of Math.'' , '''75''' (1962) pp. 603–632 {{DOI|10.2307/1970213}} {{ZBL|0112.38102}}</TD></TR> |
| <TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR> | | <TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR> |
| <TR><TD valign="top">[a12]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR> | | <TR><TD valign="top">[a12]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR> |
| <TR><TD valign="top">[a13]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR> | | <TR><TD valign="top">[a13]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR> |
| </table> | | </table> |
| + | |
| + | {{TEX|done}} |
A pre-$\lambda$-ring is a commutative ring $R$ with identity element $1$ and a set of mappings $\lambda^n : R \rightarrow R$, $n = 0,1,2,\ldots$ such that
i) $\lambda^0(x) = 1$ for all $x \in R$;
ii) $\lambda^1(x) = x$ for all $x \in R$;
iii) $\lambda^n(x+y) = \sum_{i+j=n} \lambda^i(x) \lambda^j(y)$.
Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. $K$-theory), and the complex representation ring $R(G)$ of a finite group $G$ (cf. Representation of a compact group). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$.
Let $R$ be any commutative ring with unit element 1. Consider the set $\Lambda(R) = 1 + t R[[t]]$ of power series in $t$ over $R$ with constant term 1. Multiplication of power series turns $\Lambda(R)$ into an Abelian group. A pre-$\lambda$-ring structure on $\Lambda(R)$ defines a homomorphism of Abelian groups $\lambda_t : R \rightarrow \Lambda(R)$, $\lambda_t(x) = \lambda^0(x) + \lambda^1(x) t + \lambda^2(x) t^2 + \cdots$, and vice versa.
Let $\alpha(t) = 1 + a_1 t + a_2 t^2 + \cdots$, $\beta(t) = 1 + b_1 t + b_2 t^2 + \cdots$ be two elements of $\Lambda(R)$. Formally, write
$$
\alpha(t) = \prod_{i=1}^\infty \left({ 1 - \xi_i t }\right)
$$
$$
\beta(t) = \prod_{i=1}^\infty \left({ 1 - \eta_i t }\right)
$$
and consider the expressions
$$
\prod_{i,j=1}^\infty \left({ 1 - \xi_i \eta_j t }\right) = 1 + P_1 t + P_2 t^2 + \cdots \ ,
$$
$$
\prod_{i_1 < i_2 < \cdots < i_n}^\infty \left({ 1 - \xi_{i_1} \xi_{i_2} \cdots \xi_{i_n} t }\right) = 1 + L_{1,n} t + L_{2,n} t^2 + \cdots \ .
$$
The $P_i$ and $L_{i,n}$ are symmetric polynomial expressions in the $\xi$'s and $\eta$'s and hence can be written as universal polynomial expressions in the $a$'s and $b$'s. Now define a multiplication on $\Lambda(R)$ by
$$
\alpha(t) * \beta(t) = 1 + P_1(a,b) t + P_2(a,b) t^2 + \cdots
$$
($a = (a_1,a_2,\ldots)$, $b = (b_1,b_2,\ldots)$), and define operations (mappings) $\lambda^n : \Lambda(R) \rightarrow \Lambda(R)$ by
$$
\lambda^n \alpha(t) = 1 + L_{1,n}(a,b) t + L_{2,n}(a,b) t^2 + \cdots \ .
$$
The ring $\Lambda(R)$ with these operations is a pre-$\lambda$-ring. Given two pre-$\lambda$-rings $R_1$, $R_2$, a $\lambda$-ring homomorphism $\phi : R_1 \rightarrow R_2$ is a homomorphism of rings such that $\phi(\lambda^n(x)) = \lambda^n(\phi(x))$ for all $x \in R_1$, $n = 0,1,2,\ldots$.
A pre-$\lambda$-ring $R$ is a $\lambda$-ring if $\lambda_{-t} : R \rightarrow \Lambda(R)$, $\lambda_{-t}(x) = 1 - \lambda^1(x) t + \lambda^2(x) t^2 - \cdots$, is a homomorphism of pre-$\lambda$-rings. The ring $\Lambda(R)$ is always a $\lambda$-ring and so are the standard examples $K(M)$, $K_G(M)$, $R(G)$ of pre-$\lambda$-rings mentioned above.
On the other hand, consider a finite group $G$. A finite $G$-set is a finite set together with a group action of $G$. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite $G$-sets form a semi-ring, $A^+(G)$. The associated Grothendieck ring $A(G)$ is called the Burnside ring. On $A^+(G)$, define operations $\lambda^n : A^+(G) \rightarrow A^+(G)$ by taking $\lambda^n(S)$ to be the set of$n$-element subsets of $S$ with the natural induced $G$-action. This generalizes the $\lambda$-operations $\lambda^n$ on $\mathbf{N} \subset \mathbf{Z}$, $\lambda^n(m) = \binom{m}{n}$. Using iii), the $\lambda^n$ extend to $A(G)$, making the Burnside ring into a pre-$\lambda$-ring. As a rule this pre-$\lambda$-ring is not a $\lambda$-ring, [a9].
Instead of pre-$\lambda$-ring and $\lambda$-ring one also finds, respectively, the phrases $\lambda$-ring and special $\lambda$-ring in the literature.
Let $R$ be a pre-$\lambda$-ring. One defines new operations $\psi^i : R \rightarrow R$ by the formula
$$
-t \frac{d}{dt} \log \lambda_{-t} (x) = \sum_{i=1}^\infty \psi^i(x) t^i \ .
$$
These operations are called the Adams operations on the pre-$\lambda$-ring $R$. They were introduced in the case $R = K(M)$ by J.F. Adams ([a10]).
The Adams operations satisfy
iv) $\Psi^1(x) = x$;
v) $\Psi^n(x+y) = \Psi^n(x) + \Psi^n(y)$.
Let $R$ be a torsion-free pre-$\lambda$-ring; then $R$ is a $\lambda$-ring if and only if the Adams operations satisfy in addition
vi) $\Psi^i(1) = 1$;
vii) $\Psi^n(xy) = \Psi^n(x) \Psi^n(y)$;
viii) $\Psi^{ij}(x) = \Psi^i(\Psi^j(x))$.
A ring $R$ with operations $\Psi^i$ satisfying iv)–viii) is sometimes called a $\Psi$-ring.
The ring $\Lambda(R)$ is isomorphic to the ring $W(R)$ of (big) Witt vectors (cf. (the editorial comments to) Witt vector):
$$
\bar E : W(R) \rightarrow \Lambda(R)
$$
$$
(a_1,a_2,\ldots) \mapsto \prod_{i=1}^\infty \left({ 1 - a_i t^i }\right)
$$
Under this isomorphism the Adams operations $\Psi^n$ on $\Lambda(R)$ correspond to the Frobenius operations $\mathbf{f}_n : W(R) \rightarrow W(R)$.
The $\lambda$-structures on the rings $\Lambda(R)$ define a functorial morphism of ring-valued functors $\lambda_{-t}(\cdot) : \Lambda(\cdot) \rightarrow \Lambda(\Lambda(\cdot)) $. Together with $\Lambda(R) \rightarrow R$, $1 + a_1 t + a_2 t^2 + \cdots \mapsto a_1$, this defines a co-triple structure on the functor $\Lambda$, and the $\lambda$-rings are precisely the co-algebras of this co-triple.
Via the isomorphism $\bar E$ one finds "exponential homomorphisms"
$$
E : W(R) \rightarrow W(W(R))
$$
$$
E' : W(R) \rightarrow \Lambda(W(R))
$$
which should be seen as (generalizing) the so-called Artin–Hasse exponential ([a11], [a12]).
Let $w_n(R) : W(R) \rightarrow R$ be the ring homomorphism
$$
w_n (a_1,a_2,\ldots) = \sum_{d|n} d a_d^{n/d} \ .
$$
Then the Artin–Hasse exponential $E(R) : W(R) \rightarrow W(W(R))$ is functorially characterized by
$$
w_n(W(R)) \circ E(R) = \mathbf{f}_n(R)
$$
where $\mathbf{f}_n$ is the Frobenius homomorphism.
Let $V : \lambda\textsf{-Ring} \rightarrow \textsf{Ring}$ be the forgetful functor. Then the functor $\Lambda : \textsf{Ring} \rightarrow \lambda\textsf{-Ring}$ is right adjoint (cf. Adjoint functor) to $V$:
$$
\textsf{Ring}(V(S),R) \equiv \lambda\textsf{-Ring}(S,\Lambda(R))
$$
(cf. [a5], p. 20).
There are (besides the identity) three natural automorphisms of the Abelian group $\Lambda(R) = 1 + t R[[t]]$, given by the substitution $t \mapsto -t$, the "inversion" $\alpha(t) \mapsto \alpha(t)^{-1}$, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on $\Lambda(R)$; the corresponding unit elements are $1-t$, $1+t$, $(1-t)^{-1}$, $(1+t)^{-1}$. All four occur in the literature. The most frequently occurring have $1-t$ or $1+t$ as their unit element — here, in the above, $1-t$ is the unit element —, and $(1+t)^{-1}$ seems to be the most rare case.
$\lambda$-rings were introduced by A. Grothendieck in an algebraic-geometric setting [a2] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([a1]).
In case $x \in R$ is one-dimensional, i.e. $\lambda^n(x) = 0$ for $n \ge 2$, the terminology derives from the case $R = K(M)$ or $R = R(G)$; one has $\Psi^n(x) = x^n$, whence the name power operations for the $\Psi^n$. On the $\Lambda(R)$ the operations $\Psi^n$ are directly defined by
$$
\Psi^n \left({ \prod_{i=1}^\infty (1 - \xi_i t) }\right) = \prod_{i=1}^\infty (1 - \xi_i^n t) \ .
$$
References
[a1] | M.F. Atiyah, D.O. Tall, "Group representations, $\lambda$-rings and the $J$-homomorphism" Topology , 8 (1969) pp. 253–297 MR244387 |
[a2] | A. Grothendieck, "La théorie des classes de Chern" Bull. Soc. Math. France , 86 (1958) pp. 137–154 MR0116023 Zbl 0091.33201 |
[a3] | A. Grothendieck, "Classes de faisceaux et théorème de Riemann–Roch" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 20–77 Zbl 0229.14008 |
[a4] | M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) pp. 144ff MR0506881 MR0463184 Zbl 0454.14020 |
[a5] | D. Knutson, "$\lambda$-rings and the representation theory of the symmetric group" , Springer (1974) MR0364425 Zbl 0272.20008 |
[a6] | P. Berthelot, "Généralités sur les $\lambda$-anneaux" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 297–365 |
[a7] | W. Fulton, S. Lang, "Riemann–Roch algebra" , Springer (1985) MR0801033 Zbl 0579.14011 |
[a8] | T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) Zbl 0445.57023 |
[a9] | C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" Math. Z. , 146 (1976) pp. 223–238 MR0390035 Zbl 0306.20011 |
[a10] | J.F. Adams, "Vectorfields on spheres" Ann. of Math. , 75 (1962) pp. 603–632 DOI 10.2307/1970213 Zbl 0112.38102 |
[a11] | M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" Trans. Amer. Math. Soc. , 259 (1980) pp. 47–63 MR0561822 Zbl 0437.13014 |
[a12] | E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" Abh. Math. Sem. Univ. Hamburg , 6 (1928) pp. 146–162 |
[a13] | G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" Duke Math. J. , 21 (1954) pp. 575–581 MR73645 |