Difference between revisions of "Z-number"
(Start article: Z-number) |
(→References: isbn link) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | ''Mahler's 3/2 problem'' concerns the existence of "Z-numbers". A ''Z-number'' is a real number $x$ such that the [[fractional part]]s | + | ''Mahler's 3/2 problem'' concerns the existence of "Z-numbers". A ''Z-number'' is a real number $x$ such that the [[Fractional part of a number|fractional part]]s |
$$ | $$ | ||
\left\lbrace x (3/2)^ n \right\rbrace | \left\lbrace x (3/2)^ n \right\rbrace | ||
Line 17: | Line 17: | ||
====References==== | ====References==== | ||
− | * Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas; ''Recurrence sequences'' Mathematical Surveys and Monographs '''104''' American Mathematical Society (2003) ISBN 0-8218-3387-1 {{ZBL|1033.11006}} | + | * Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas; ''Recurrence sequences'' Mathematical Surveys and Monographs '''104''' American Mathematical Society (2003) {{ISBN|0-8218-3387-1}} {{ZBL|1033.11006}} |
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 13:38, 25 November 2023
Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number $x$ such that the fractional parts $$ \left\lbrace x (3/2)^ n \right\rbrace $$ are less than 1/2 for all natural numbers $n$. Kurt Mahler conjectured in 1968 that there are no Z-numbers.
More generally, for a real number $\alpha$, define $\Omega(\alpha)$ as $$ \Omega(\alpha) = \inf_\theta\left({ \limsup_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace - \liminf_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace }\right) \ . $$ Mahler's conjecture would thus imply that $\Omega(3/2)$ exceeds 1/2. This is true, and indeed Flatto, Lagarias and Pollington showed that $$ \Omega(p/q) > 1/q $$ for rational $p/q$.
References
- Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas; Recurrence sequences Mathematical Surveys and Monographs 104 American Mathematical Society (2003) ISBN 0-8218-3387-1 Zbl 1033.11006
Z-number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Z-number&oldid=37497