Difference between revisions of "Groupoid"
m (better) |
|||
(3 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
''for the general algebraic structure, see [[Magma]]'' | ''for the general algebraic structure, see [[Magma]]'' | ||
− | A term introduced by H. Brandt [[#References|[a1]]]. A groupoid may conveniently be defined as a (small) [[ | + | A term introduced by H. Brandt [[#References|[a1]]]. A groupoid may conveniently be defined as a (small) [[category]] in which every morphism is an isomorphism; equivalently, it is a set $G$ equipped with a [[unary operation]] $g\mapsto g^{-1}$ and a partial [[binary operation]] $(g,h)\mapsto gh$ satisfying |
1) $gg^{-1}$ and $g^{-1}g$ are always defined; | 1) $gg^{-1}$ and $g^{-1}g$ are always defined; | ||
Line 13: | Line 13: | ||
4) each of $g^{-1}gh$, $hg^{-1}g$, $gg^{-1}h$, and $hgg^{-1}$ is equal to $h$ if it is defined. | 4) each of $g^{-1}gh$, $hg^{-1}g$, $gg^{-1}h$, and $hgg^{-1}$ is equal to $h$ if it is defined. | ||
− | Groupoids, as a special case of categories, play an important role in many areas of application of category theory, including algebra [[#References|[a2]]], | + | Groupoids, as a special case of categories, play an important role in many areas of application of category theory, including algebra [[#References|[a2]]], differential geometry [[#References|[a3]]] and topology [[#References|[a4]]], [[#References|[a5]]]. |
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Brandt, "Ueber eine Verallgemeinerung des Gruppenbegriffes" ''Math. Ann.'' , '''96''' (1926) pp. 360–366</TD></TR> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Brandt, "Ueber eine Verallgemeinerung des Gruppenbegriffes" ''Math. Ann.'' , '''96''' (1926) pp. 360–366 {{ZBL|52.0110.09}}</TD></TR> |
− | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Higgins, "Categories and groupoids" , v. Nostrand-Reinhold (1971)</TD></TR> | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Higgins, "Categories and groupoids" , v. Nostrand-Reinhold (1971) {{ZBL|0226.20054}}</TD></TR> |
<TR><TD valign="top">[a3]</TD> <TD valign="top"> Ch. Ehresmann, "Structures locales et catégories ordonnés" , ''Oeuvres complètes et commentées'' , ''Supplément aux Cahiers de Topologie et Géométrie Différentielle Catégoriques'' , '''Partie II''' (1980)</TD></TR> | <TR><TD valign="top">[a3]</TD> <TD valign="top"> Ch. Ehresmann, "Structures locales et catégories ordonnés" , ''Oeuvres complètes et commentées'' , ''Supplément aux Cahiers de Topologie et Géométrie Différentielle Catégoriques'' , '''Partie II''' (1980)</TD></TR> | ||
<TR><TD valign="top">[a4]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR> | <TR><TD valign="top">[a4]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR> | ||
<TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Brown, "From groups to groupoids: a brief survey" ''Bull. London Math. Soc.'' , '''19''' (1987) pp. 113–134</TD></TR> | <TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Brown, "From groups to groupoids: a brief survey" ''Bull. London Math. Soc.'' , '''19''' (1987) pp. 113–134</TD></TR> | ||
</table> | </table> |
Latest revision as of 20:56, 16 March 2023
for the general algebraic structure, see Magma
A term introduced by H. Brandt [a1]. A groupoid may conveniently be defined as a (small) category in which every morphism is an isomorphism; equivalently, it is a set $G$ equipped with a unary operation $g\mapsto g^{-1}$ and a partial binary operation $(g,h)\mapsto gh$ satisfying
1) $gg^{-1}$ and $g^{-1}g$ are always defined;
2) $gh$ is defined if and only if $g^{-1}g=hh^{-1}$;
3) if $gh$ and $hk$ are defined, then $(gh)k$ and $g(hk)$ are defined and equal;
4) each of $g^{-1}gh$, $hg^{-1}g$, $gg^{-1}h$, and $hgg^{-1}$ is equal to $h$ if it is defined.
Groupoids, as a special case of categories, play an important role in many areas of application of category theory, including algebra [a2], differential geometry [a3] and topology [a4], [a5].
References
[a1] | H. Brandt, "Ueber eine Verallgemeinerung des Gruppenbegriffes" Math. Ann. , 96 (1926) pp. 360–366 Zbl 52.0110.09 |
[a2] | P.J. Higgins, "Categories and groupoids" , v. Nostrand-Reinhold (1971) Zbl 0226.20054 |
[a3] | Ch. Ehresmann, "Structures locales et catégories ordonnés" , Oeuvres complètes et commentées , Supplément aux Cahiers de Topologie et Géométrie Différentielle Catégoriques , Partie II (1980) |
[a4] | R. Brown, "Elements of modern topology" , McGraw-Hill (1968) |
[a5] | R. Brown, "From groups to groupoids: a brief survey" Bull. London Math. Soc. , 19 (1987) pp. 113–134 |
Groupoid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Groupoid&oldid=36918