Difference between revisions of "Compact lattice element"
From Encyclopedia of Mathematics
(define finite elements, cite Davey & Priestley) |
(→References: isbn link) |
||
Line 27: | Line 27: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) {{ISBN|978-0-521-78451-1}}</TD></TR> |
</table> | </table> |
Latest revision as of 08:06, 26 November 2023
2020 Mathematics Subject Classification: Primary: 06B23 [MSN][ZBL]
An element of a complete lattice L for which the condition a \le \bigvee_{j \in J} x_j\,,\ \ x_j \in L\,, implies a \le x_{j_1} \vee \cdots \vee x_{j_k} for some finite subset \{j_1,\ldots,j_k\} \subset J.
An algebraic lattice is one in which each element is the union (least upper bound) of a set of compact elements.
A finite element b of a lattice L is one for which the condition b \le \bigvee_{d \in D} d for a directed set D \subset L implies b \le d for some d \in D.
In a complete lattice, the compact elements are precisely the finite elements.
References
[1] | B. A. Davey, H. A. Priestley, Introduction to lattices and order, 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1 |
How to Cite This Entry:
Compact lattice element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Compact_lattice_element&oldid=36188
Compact lattice element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Compact_lattice_element&oldid=36188
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article