Difference between revisions of "Edmonds matrix"
(Start article: Edmonds matrix) |
m (→References: isbn link) |
||
Line 13: | Line 13: | ||
==References== | ==References== | ||
− | * Rajeev Motwani, Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press (1995) ISBN 978-0-521-47465-8 {{ZBL|0849.68039}} | + | * Rajeev Motwani, Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press (1995) {{ISBN|978-0-521-47465-8}} {{ZBL|0849.68039}} |
− | * Allen B. Tucker, "Computer Science Handbook", 2nd ed. CRC Press (2004) ISBN 158488360X | + | * Allen B. Tucker, "Computer Science Handbook", 2nd ed. CRC Press (2004) {{ISBN|158488360X}} |
Latest revision as of 07:29, 14 November 2023
2020 Mathematics Subject Classification: Primary: 05C50 Secondary: 05C70 [MSN][ZBL]
In graph theory, the Edmonds matrix $A$ of a balanced bipartite graph $G = (V,E)$ is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. Suppose that the vertex set $V = A \cup B$ where $A = \{a_1,\ldots,a_n\}$ and $B = \{b_1,\ldots,b_n\}$ .
The Edmonds matrix is an $n \times n$ matrix $A$ with entries $$ A_{ij} = \begin{cases} x_{ij}\;\;\mbox{if}\;(a_i,b_j) \in E \\ 0\;\;\;\;\mbox{otherwise} \end{cases} $$ where the $x_{ij}$ are indeterminates. The determinant of this matrix is then a polynomial in the variables $x_{ij}$ and is non-zero (as a polynomial) if and only if a perfect matching exists.
The Tutte matrix is a generalisation of the Edmonds matrix to a general graph.
References
- Rajeev Motwani, Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press (1995) ISBN 978-0-521-47465-8 Zbl 0849.68039
- Allen B. Tucker, "Computer Science Handbook", 2nd ed. CRC Press (2004) ISBN 158488360X
Edmonds matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Edmonds_matrix&oldid=36125