|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A primitive root of unity of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746301.png" /> in a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746302.png" /> is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746303.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746304.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746306.png" /> for any positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746307.png" />. The element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746308.png" /> generates the [[Cyclic group|cyclic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p0746309.png" /> of roots of unity of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463010.png" />.
| + | {{TEX|done}} |
| | | |
− | If in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463011.png" /> there exists a primitive root of unity of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463012.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463013.png" /> is relatively prime to the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463014.png" />. An [[Algebraically closed field|algebraically closed field]] contains a primitive root of any order that is relatively prime with its characteristic. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463015.png" /> is a primitive root of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463016.png" />, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463017.png" /> that is relatively prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463018.png" />, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463019.png" /> is also a primitive root. The number of all primitive roots of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463020.png" /> is equal to the value of the [[Euler function|Euler function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463021.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463022.png" />.
| + | ==Primitive root of unity== |
| + | A primitive root of unity of order $m$ in a field $K$ is an element $\zeta$ of $K$ such that $\zeta^m = 1$ and $\zeta^r \neq 1$ for any positive integer $r < m$. The element $\zeta$ generates the [[cyclic group]] $\mu_m$ of roots of unity of order $m$. |
| | | |
− | In the field of complex numbers, the primitive roots of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463023.png" /> take the form
| + | If in $K$ there exists a primitive root of unity of order $m$, then $m$ is relatively prime to the [[Characteristic of a field|characteristic]] of $K$. An [[algebraically closed field]] contains a primitive root of any order that is relatively prime with its characteristic. If $\zeta$ is a primitive root of order $m$, then for any $k$ that is relatively prime to $m$, the element $\zeta^k$ is also a primitive root. The number of all primitive roots of order $m$ is equal to the value of the [[Euler function]] $\phi(m)$ if $\mathrm{hcf}(m,\mathrm{char}(K)) = 1$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463024.png" /></td> </tr></table>
| + | In the field of [[complex number]]s, there are primitive roots of unity of every order: those of order $m$ take the form |
| + | $$ |
| + | \cos \frac{2\pi k}{m} + i \sin \frac{2\pi k}{m} |
| + | $$ |
| + | where $0 < k < m$ and $k$ is relatively prime to $m$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463026.png" /> is relatively prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463027.png" />.
| + | ==Primitive root in modular arithmetic== |
| + | A primitive root modulo $m$ is an integer $g$ such that |
| + | $$ |
| + | g^{\phi(m)} \equiv 1 \pmod m\ \ \ \text{and}\ \ \ g^\gamma \not\equiv 1 \pmod m |
| + | $$ |
| + | for $1 \le \gamma < \phi(m )$, where $\phi(m)$ is the Euler function. For a primitive root $g$, its powers $g^0=1,\ldots,g^{\phi(m)-1}$ are incongruent modulo $m$ and form a [[reduced system of residues]] modulo $m$. Therefore, for each number $a$ that is relatively prime to $m$ one can find an exponent $\gamma$, $0 \le \gamma < \phi(m)$ for which $g^\gamma \equiv a \pmod m$: the [[index]] of $a$ with respect to $g$. |
| | | |
− | A primitive root modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463029.png" /> is an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463030.png" /> such that
| + | Primitive roots do not exist for all moduli, but only for moduli $m$ of the form $2,4, p^a, 2p^a$, where $p>2$ is a prime number. In these cases, the [[multiplicative group]]s of reduced residue classes modulo $m$ have the simplest possible structure: they are cyclic groups of order $\phi(m)$. The concept of a primitive root modulo $m$ is closely related to the concept of the [[index]] of a number modulo $m$. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463031.png" /></td> </tr></table>
| |
− | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463033.png" /> is the Euler function. For a primitive root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463034.png" />, its powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463035.png" /> are incongruent modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463036.png" /> and form a reduced residue system modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463037.png" /> (cf. [[Reduced system of residues|Reduced system of residues]]). Therefore, for each number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463038.png" /> that is relatively prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463039.png" /> one can find an exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463040.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463041.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463042.png" />: the [[index]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463038.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463034.png" />.
| |
− | | |
− | Primitive roots do not exist for all moduli, but only for moduli <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463043.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463045.png" /> is a prime number. In these cases, the multiplicative groups (cf. [[Multiplicative group|Multiplicative group]]) of reduced residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463046.png" /> have the simplest possible structure: they are cyclic groups of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463047.png" />. The concept of a primitive root modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463048.png" /> is closely related to the concept of the [[Index|index]] of a number modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074630/p07463049.png" />. | |
| | | |
| Primitive roots modulo a prime number were introduced by L. Euler, but the existence of primitive roots modulo an arbitrary prime number was demonstrated by C.F. Gauss (1801). | | Primitive roots modulo a prime number were introduced by L. Euler, but the existence of primitive roots modulo an arbitrary prime number was demonstrated by C.F. Gauss (1801). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.F. Gauss, "Disquisitiones Arithmeticae" , Yale Univ. Press (1966) (Translated from Latin)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> C.F. Gauss, "Disquisitiones Arithmeticae" , Yale Univ. Press (1966) (Translated from Latin)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR> |
| + | </table> |
| | | |
| | | |
Line 28: |
Line 36: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979)</TD></TR> |
| + | </table> |
Primitive root of unity
A primitive root of unity of order $m$ in a field $K$ is an element $\zeta$ of $K$ such that $\zeta^m = 1$ and $\zeta^r \neq 1$ for any positive integer $r < m$. The element $\zeta$ generates the cyclic group $\mu_m$ of roots of unity of order $m$.
If in $K$ there exists a primitive root of unity of order $m$, then $m$ is relatively prime to the characteristic of $K$. An algebraically closed field contains a primitive root of any order that is relatively prime with its characteristic. If $\zeta$ is a primitive root of order $m$, then for any $k$ that is relatively prime to $m$, the element $\zeta^k$ is also a primitive root. The number of all primitive roots of order $m$ is equal to the value of the Euler function $\phi(m)$ if $\mathrm{hcf}(m,\mathrm{char}(K)) = 1$.
In the field of complex numbers, there are primitive roots of unity of every order: those of order $m$ take the form
$$
\cos \frac{2\pi k}{m} + i \sin \frac{2\pi k}{m}
$$
where $0 < k < m$ and $k$ is relatively prime to $m$.
Primitive root in modular arithmetic
A primitive root modulo $m$ is an integer $g$ such that
$$
g^{\phi(m)} \equiv 1 \pmod m\ \ \ \text{and}\ \ \ g^\gamma \not\equiv 1 \pmod m
$$
for $1 \le \gamma < \phi(m )$, where $\phi(m)$ is the Euler function. For a primitive root $g$, its powers $g^0=1,\ldots,g^{\phi(m)-1}$ are incongruent modulo $m$ and form a reduced system of residues modulo $m$. Therefore, for each number $a$ that is relatively prime to $m$ one can find an exponent $\gamma$, $0 \le \gamma < \phi(m)$ for which $g^\gamma \equiv a \pmod m$: the index of $a$ with respect to $g$.
Primitive roots do not exist for all moduli, but only for moduli $m$ of the form $2,4, p^a, 2p^a$, where $p>2$ is a prime number. In these cases, the multiplicative groups of reduced residue classes modulo $m$ have the simplest possible structure: they are cyclic groups of order $\phi(m)$. The concept of a primitive root modulo $m$ is closely related to the concept of the index of a number modulo $m$.
Primitive roots modulo a prime number were introduced by L. Euler, but the existence of primitive roots modulo an arbitrary prime number was demonstrated by C.F. Gauss (1801).
References
[1] | S. Lang, "Algebra" , Addison-Wesley (1984) |
[2] | C.F. Gauss, "Disquisitiones Arithmeticae" , Yale Univ. Press (1966) (Translated from Latin) |
[3] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) |