Namespaces
Variants
Actions

Difference between revisions of "Isotropic quadratic form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Isotropic quadratic form)
 
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
A [[quadratic form]] $q$ on a [[vector space]] over a field $F$ which is non-degenerate (the associated [[bilinear form]] is non-singular) but which represents zero non-trivially: there is a non-zero vector $v$ such that $q(v) = 0$.
 
A [[quadratic form]] $q$ on a [[vector space]] over a field $F$ which is non-degenerate (the associated [[bilinear form]] is non-singular) but which represents zero non-trivially: there is a non-zero vector $v$ such that $q(v) = 0$.
  
An '''anisotropic quadratic form'''' $q$ is one for which  $q(v) = 0 \Rightarrow v=0$.
+
An '''anisotropic quadratic form''' $q$ is one for which  $q(v) = 0 \Rightarrow v=0$.
  
 
====References====
 
====References====
* Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'',  Graduate Studies in Mathematics '''67''',  American Mathematical Society (2005) ISBN 0-8218-1095-2 {{ZBL|1068.11023}} {{MR|2104929 }}  
+
* Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'',  Graduate Studies in Mathematics '''67''',  American Mathematical Society (2005) {{ISBN|0-8218-1095-2}} {{ZBL|1068.11023}} {{MR|2104929 }}  
* J.W. Milnor, D. Husemöller, ''Symmetric bilinear forms'', Ergebnisse der Mathematik und ihrer Grenzgebiete '''73''', Springer-Verlag (1973) ISBN 0-387-06009-X {{ZBL|0292.10016}}
+
* J.W. Milnor, D. Husemöller, ''Symmetric bilinear forms'', Ergebnisse der Mathematik und ihrer Grenzgebiete '''73''', Springer-Verlag (1973) {{ISBN|0-387-06009-X}} {{ZBL|0292.10016}}

Latest revision as of 19:32, 15 November 2023

2020 Mathematics Subject Classification: Primary: 15A63 [MSN][ZBL]

A quadratic form $q$ on a vector space over a field $F$ which is non-degenerate (the associated bilinear form is non-singular) but which represents zero non-trivially: there is a non-zero vector $v$ such that $q(v) = 0$.

An anisotropic quadratic form $q$ is one for which $q(v) = 0 \Rightarrow v=0$.

References

  • Tsit Yuen Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society (2005) ISBN 0-8218-1095-2 Zbl 1068.11023 MR2104929
  • J.W. Milnor, D. Husemöller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete 73, Springer-Verlag (1973) ISBN 0-387-06009-X Zbl 0292.10016
How to Cite This Entry:
Isotropic quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isotropic_quadratic_form&oldid=35459