Difference between revisions of "Unordered pair"
From Encyclopedia of Mathematics
(MSC 03E) |
(→References: isbn link) |
||
Line 7: | Line 7: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> P. R. Halmos, ''Naive Set Theory'', Springer (1960) ISBN 0-387-90092-6</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P. R. Halmos, ''Naive Set Theory'', Springer (1960) {{ISBN|0-387-90092-6}}</TD></TR> |
</table> | </table> |
Latest revision as of 11:55, 23 November 2023
2020 Mathematics Subject Classification: Primary: 03E [MSN][ZBL]
doubleton
A set containing two elements, denoted $\{x,y\}$. One has $z \in \{x,y\} \Leftrightarrow z = x \vee z = y$, and so $\{x,y\} = \{y,x\}$. Compare with an ordered pair.
References
[1] | P. R. Halmos, Naive Set Theory, Springer (1960) ISBN 0-387-90092-6 |
How to Cite This Entry:
Unordered pair. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unordered_pair&oldid=35391
Unordered pair. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unordered_pair&oldid=35391