Difference between revisions of "Frobenius formula"
m (link) |
m (using vdots and ddots) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f0417801.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/F041/F.0401780 Frobenius formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A formula expressing a relation between the generalized Vandermonde determinant and the ordinary one (see [[Vandermonde determinant|Vandermonde determinant]]) in terms of sums of powers. The characters of representations of a symmetric group (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]) appear as coefficients in the Frobenius formula. | A formula expressing a relation between the generalized Vandermonde determinant and the ordinary one (see [[Vandermonde determinant|Vandermonde determinant]]) in terms of sums of powers. The characters of representations of a symmetric group (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]) appear as coefficients in the Frobenius formula. | ||
− | Let | + | Let $ x _ {1} \dots x _ {n} $ |
+ | be independent variables. For any $ n $-tuple $ \lambda = ( \lambda _ {1} \dots \lambda _ {n} ) $ | ||
+ | of non-negative integers satisfying the condition $ \lambda _ {1} \geq \dots \geq \lambda _ {n} $, | ||
+ | let | ||
+ | |||
+ | $$ | ||
+ | W _ \lambda = \left | | ||
+ | |||
+ | \begin{array}{lll} | ||
+ | x _ {1} ^ {\lambda _ {1} + n - 1 } &\cdots &x _ {n} ^ {\lambda _ {1} + n - 1 } \\ | ||
+ | \vdots &\ddots &\vdots \\ | ||
+ | x _ {1} ^ {\lambda _ {n} } &\cdots &x _ {n} ^ {\lambda _ {n} } \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right | , | ||
+ | $$ | ||
− | + | so that $ W _ {0} $ | |
+ | is the ordinary Vandermonde determinant. Let $ \sum \lambda _ {i} = m $; | ||
+ | then after discarding zeros the $ n $-tuple $ \lambda $ | ||
+ | can be regarded as a partition of the number $ m $. | ||
+ | Consider the corresponding irreducible representation $ T _ \lambda $ | ||
+ | of the symmetric group $ S _ {m} $. | ||
+ | For any partition $ \mu = ( \mu _ {1} \dots \mu _ {r} ) $ | ||
+ | of $ m $ | ||
+ | one denotes by $ a _ {\lambda \mu } $ | ||
+ | the value of the character of $ T _ \lambda $ | ||
+ | on the [[conjugacy class]] of $ S _ {m} $ | ||
+ | determined by $ \mu $, | ||
+ | and by $ c _ \mu $ | ||
+ | the order of the centralizer of any permutation in this class. Let $ s _ \mu = s _ {\mu _ {1} } \dots s _ {\mu _ {r} } $, | ||
+ | where $ s _ {k} = x _ {1} ^ {k} + \dots + x _ {n} ^ {k} $. | ||
+ | Then | ||
− | + | $$ | |
− | + | \frac{W _ \lambda }{W _ {0} } | |
+ | = \ | ||
+ | \sum _ \mu a _ {\lambda \mu } | ||
+ | c _ \mu ^ {- 1} s _ \mu , | ||
+ | $$ | ||
− | where the sum is taken over all (unordered) partitions of | + | where the sum is taken over all (unordered) partitions of $ m $. |
+ | Here, if the partition $ \mu $ | ||
+ | contains $ k _ {1} $ | ||
+ | ones, $ k _ {2} $ | ||
+ | twos, etc., then | ||
− | + | $$ | |
+ | c _ \mu = | ||
+ | k _ {1} ! k _ {2} ! \dots | ||
+ | 1 ^ {k _ {1} } 2 ^ {k _ {2} } \dots . | ||
+ | $$ | ||
− | If | + | If $ n \geq m $, |
+ | then Frobenius' formula can be put in the form | ||
− | + | $$ | |
+ | \sum _ \lambda | ||
+ | a _ {\lambda \mu } | ||
+ | W _ \lambda = \ | ||
+ | s _ \mu W _ {0} , | ||
+ | $$ | ||
− | where the sum is taken over all partitions of | + | where the sum is taken over all partitions of $ m $( |
+ | adding the appropriate number of zeros). The last formula can be used to compute the characters of the symmetric group. Namely, $ a _ {\lambda \mu } $ | ||
+ | is the coefficient of $ x _ {1} ^ {\lambda _ {1} + n - 1 } {} \dots x _ {n} ^ {\lambda _ {n} } $ | ||
+ | in the polynomial $ s _ \mu W _ {0} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.D. Murnagan, "The theory of group representations" , Johns Hopkins Univ. Press (1938)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.D. Murnagan, "The theory of group representations" , Johns Hopkins Univ. Press (1938)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 16:18, 5 February 2022
A formula expressing a relation between the generalized Vandermonde determinant and the ordinary one (see Vandermonde determinant) in terms of sums of powers. The characters of representations of a symmetric group (cf. Representation of the symmetric groups) appear as coefficients in the Frobenius formula.
Let $ x _ {1} \dots x _ {n} $ be independent variables. For any $ n $-tuple $ \lambda = ( \lambda _ {1} \dots \lambda _ {n} ) $ of non-negative integers satisfying the condition $ \lambda _ {1} \geq \dots \geq \lambda _ {n} $, let
$$ W _ \lambda = \left | \begin{array}{lll} x _ {1} ^ {\lambda _ {1} + n - 1 } &\cdots &x _ {n} ^ {\lambda _ {1} + n - 1 } \\ \vdots &\ddots &\vdots \\ x _ {1} ^ {\lambda _ {n} } &\cdots &x _ {n} ^ {\lambda _ {n} } \\ \end{array} \ \right | , $$
so that $ W _ {0} $ is the ordinary Vandermonde determinant. Let $ \sum \lambda _ {i} = m $; then after discarding zeros the $ n $-tuple $ \lambda $ can be regarded as a partition of the number $ m $. Consider the corresponding irreducible representation $ T _ \lambda $ of the symmetric group $ S _ {m} $. For any partition $ \mu = ( \mu _ {1} \dots \mu _ {r} ) $ of $ m $ one denotes by $ a _ {\lambda \mu } $ the value of the character of $ T _ \lambda $ on the conjugacy class of $ S _ {m} $ determined by $ \mu $, and by $ c _ \mu $ the order of the centralizer of any permutation in this class. Let $ s _ \mu = s _ {\mu _ {1} } \dots s _ {\mu _ {r} } $, where $ s _ {k} = x _ {1} ^ {k} + \dots + x _ {n} ^ {k} $. Then
$$ \frac{W _ \lambda }{W _ {0} } = \ \sum _ \mu a _ {\lambda \mu } c _ \mu ^ {- 1} s _ \mu , $$
where the sum is taken over all (unordered) partitions of $ m $. Here, if the partition $ \mu $ contains $ k _ {1} $ ones, $ k _ {2} $ twos, etc., then
$$ c _ \mu = k _ {1} ! k _ {2} ! \dots 1 ^ {k _ {1} } 2 ^ {k _ {2} } \dots . $$
If $ n \geq m $, then Frobenius' formula can be put in the form
$$ \sum _ \lambda a _ {\lambda \mu } W _ \lambda = \ s _ \mu W _ {0} , $$
where the sum is taken over all partitions of $ m $( adding the appropriate number of zeros). The last formula can be used to compute the characters of the symmetric group. Namely, $ a _ {\lambda \mu } $ is the coefficient of $ x _ {1} ^ {\lambda _ {1} + n - 1 } {} \dots x _ {n} ^ {\lambda _ {n} } $ in the polynomial $ s _ \mu W _ {0} $.
References
[1] | F.D. Murnagan, "The theory of group representations" , Johns Hopkins Univ. Press (1938) |
Comments
See also Character of a representation of a group.
References
[a1] | H. Boerner, "Representations of groups" , North-Holland (1970) (Translated from German) |
[a2] | D.E. Littlewood, "The theory of group characters and matrix representations of groups" , Clarendon Press (1950) |
[a3] | I.G. Macdonald, "Symmetric functions and Hall polynomials" , Clarendon Press (1979) |
[a4] | B.G. Wybourne, "Symmetry principles and atomic spectroscopy" , Wiley (Interscience) (1970) |
Frobenius formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frobenius_formula&oldid=35124