Difference between revisions of "Ramanujan function"
(LaTeX) |
m (→References: + ZBL link) |
||
(5 intermediate revisions by one other user not shown) | |||
Line 13: | Line 13: | ||
\Delta(z) = D(\exp(2\pi i z)) | \Delta(z) = D(\exp(2\pi i z)) | ||
$$ | $$ | ||
− | then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [[#References|[1]]]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) | + | then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [[#References|[1]]]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) the following properties of the Ramanujan function: it is a [[multiplicative arithmetic function]] |
$$ | $$ | ||
\tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; | \tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; | ||
$$ | $$ | ||
+ | and | ||
$$ | $$ | ||
\tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . | \tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . | ||
Line 31: | Line 32: | ||
$$ | $$ | ||
$$ | $$ | ||
− | \tau(p) \equiv p + p^10 \pmod{25} | + | \tau(p) \equiv p + p^{10} \pmod{25} |
$$ | $$ | ||
etc. | etc. | ||
Line 37: | Line 38: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Ramanujan, "On certain arithmetical functions" ''Trans. Cambridge Philos. Soc.'' , '''22''' (1916) pp. 159–184</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Ramanujan, "On certain arithmetical functions" ''Trans. Cambridge Philos. Soc.'' , '''22''' (1916) pp. 159–184 {{ZBL|07426016}}</TD></TR> |
<TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" ''Sém. Delange–Pisot–Poitou (Théorie des nombres)'' , '''9''' : 14 (1967/68) pp. 1–17</TD></TR> | <TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" ''Sém. Delange–Pisot–Poitou (Théorie des nombres)'' , '''9''' : 14 (1967/68) pp. 1–17</TD></TR> | ||
− | <TR><TD valign="top">[3]</TD> <TD valign="top"> O.M. Fomenko, "Applications of the theory of modular forms to number theory" ''J. Soviet Math.'' , '''14''' : 4 (1980) pp. 1307–1362 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''15''' (1977) pp. 5–91</TD></TR> | + | <TR><TD valign="top">[3]</TD> <TD valign="top"> O.M. Fomenko, "Applications of the theory of modular forms to number theory" ''J. Soviet Math.'' , '''14''' : 4 (1980) pp. 1307–1362 {{ZBL|0446.10021}} ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''15''' (1977) pp. 5–91 {{ZBL|0434.10018}}</TD></TR> |
</table> | </table> | ||
+ | ====Comments==== | ||
+ | D.H. Lehmer asked whether there exists an $n \in \mathbb{N}$ such that $\tau(n) = 0$, [[#References|[a2]]]. This is still (1990) not known, but one believes that the answer is "no" . For an elementary introduction to the background of $\Delta(z)$, see [[#References|[a1]]]. | ||
− | + | The properties mentioned can be combined in the Euler product expansion of the [[formal Dirichlet series]] | |
− | + | $$ | |
− | + | \sum_n \tau(n) n^{-s} = \prod_p \left(1 - \tau(p) p^{-s} + p^{11-2s} \right)^{-1} | |
+ | $$ | ||
+ | which follows from $\Delta$ being a Hecke eigenform of weight 12. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular functions and Dirichlet series in number theory" , Springer ( | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular functions and Dirichlet series in number theory" (2nd ed) , Springer (1990) {{ZBL|0697.10023}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> D. H. Lehmer, "The vanishing of Ramanujan’s function $\tau(n)$", ''Duke Math. J.'' '''14''' (1947) 429-433. {{DOI|10.1215/S0012-7094-47-01436-1}} {{MR|0021027}} {{ZBL|0029.34502}}</TD></TR> | ||
+ | </table> |
Latest revision as of 14:20, 17 March 2023
2020 Mathematics Subject Classification: Primary: 11F [MSN][ZBL]
The function $n \mapsto \tau(n)$, where $\tau(n)$ is the coefficient of $x^n$ ($n \ge 1$) in the expansion of the product $$ D(x) = x \prod_{m=1}^\infty (1 - x^m)^{24} $$ as a power series: $$ D(x) = \sum_{n=1}^\infty \tau(n) x^n \ . $$ If one puts $$ \Delta(z) = D(\exp(2\pi i z)) $$ then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [1]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) the following properties of the Ramanujan function: it is a multiplicative arithmetic function $$ \tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; $$ and $$ \tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . $$
Consequently, the calculation of $\tau(n)$ reduces to calculating $\tau(p)$ when $p$ is prime. It is known that $|\tau(p)| \le p^{11/2}$ (see Ramanujan hypothesis). It is known that the Ramanujan function satisfies many congruence relations. For example, Ramanujan knew the congruence $$ \tau(p) \equiv 1 + p^{11} \pmod{691} \ . $$
Examples of congruence relations discovered later are: $$ \tau(n) \equiv \sigma_{11}(n) \pmod{2^{11}} \ \text{if}\ n \equiv 1 \pmod 8 $$ $$ \tau(p) \equiv p + p^{10} \pmod{25} $$ etc.
References
[1] | S. Ramanujan, "On certain arithmetical functions" Trans. Cambridge Philos. Soc. , 22 (1916) pp. 159–184 Zbl 07426016 |
[2] | J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" Sém. Delange–Pisot–Poitou (Théorie des nombres) , 9 : 14 (1967/68) pp. 1–17 |
[3] | O.M. Fomenko, "Applications of the theory of modular forms to number theory" J. Soviet Math. , 14 : 4 (1980) pp. 1307–1362 Zbl 0446.10021 Itogi Nauk. i Tekhn. Algebra Topol. Geom. , 15 (1977) pp. 5–91 Zbl 0434.10018 |
Comments
D.H. Lehmer asked whether there exists an $n \in \mathbb{N}$ such that $\tau(n) = 0$, [a2]. This is still (1990) not known, but one believes that the answer is "no" . For an elementary introduction to the background of $\Delta(z)$, see [a1].
The properties mentioned can be combined in the Euler product expansion of the formal Dirichlet series $$ \sum_n \tau(n) n^{-s} = \prod_p \left(1 - \tau(p) p^{-s} + p^{11-2s} \right)^{-1} $$ which follows from $\Delta$ being a Hecke eigenform of weight 12.
References
[a1] | T.M. Apostol, "Modular functions and Dirichlet series in number theory" (2nd ed) , Springer (1990) Zbl 0697.10023 |
[a2] | D. H. Lehmer, "The vanishing of Ramanujan’s function $\tau(n)$", Duke Math. J. 14 (1947) 429-433. DOI 10.1215/S0012-7094-47-01436-1 MR0021027 Zbl 0029.34502 |
Ramanujan function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ramanujan_function&oldid=35020