Difference between revisions of "Akivis algebra"
m (link) |
(MSC 17A40) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{MSC|17A40}} | |
− | + | A [[vector space]] over a [[field]] with an anti-symmetric bilinear multiplication $(x,y) \mapsto [x,y]$ and a multilinear [[ternary operation]] $(x,y,z) \mapsto \langle x,y,z\rangle$ which are linked by the so-called Akivis condition, defined as follows [[#References|[a4]]], [[#References|[a5]]]. Let $S_3$ denote the group of all six permutations and $A_3$ the subgroup of all three cyclic permutations of the set $\{1,2,3\}$. Define $J(x,y,z) = \sum_{\sigma \in A_3} \left[{\left[x_{\sigma(1)},x_{\sigma(2)}\right],x_{\sigma(3)}}\right]$. The Akivis condition reads: | |
+ | $$ | ||
+ | \sum_{\sigma \in S_3} \mathrm{sgn}(\sigma) \left\langle x_{\sigma(1)},x_{\sigma(2)},x_{\sigma(3)}\right\rangle = J(x_1,x_2,x_3) \ . | ||
+ | $$ | ||
+ | The specialization $\langle x,y,z \rangle \equiv 0$ yields a [[Lie algebra]]. If $A$ is an arbitrary non-associative algebra over a field with a binary bilinear multiplication $(x,y) \mapsto x \cdot y$ (cf. also [[Non-associative rings and algebras]]), then $[x,y] = x \cdot y - y \cdot x$ and $\langle x,y,z \rangle = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ define an Akivis algebra on $A$. The tangent algebra of a local analytic loop (cf. [[Loop, analytic]]) is always an Akivis algebra. This generalizes the facts that the tangent algebra of a local [[Lie group]] (cf. also [[Lie group, local]]) is a [[Lie algebra]] and that the tangent algebra of a local [[Moufang loop]] is a [[Mal'tsev algebra]]. Analytic or differentiable quasi-groups (cf. [[Quasi-group]]) and loops arise in the study of the geometry of webs (cf. [[Web]]), [[#References|[a2]]], [[#References|[a3]]], [[#References|[a5]]]. | ||
− | + | ====References==== | |
+ | <table> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M.A. Akivis, "The canonical expansions of the equations of a local analytic quasigroup" ''Soviet Math. Dokl.'' , '''10''' (1969) pp. 1200–1203 ''Dokl. Akad. Nauk SSSR'' , '''188''' (1969) pp. 967–970</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> V.V. Goldberg, "Local differentiable quasigroups and webs" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , ''Quasigroups and Loops - Theory and Applications'' , Heldermann (1990) pp. 263–311</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> V.V. Goldberg, "Theory of multicodimensional $(n+1)$-webs" , Kluwer Acad. Publ. (1988)</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> K.H. Hofmann, K. Strambach, "The Akivis algebra of a homogeneous loop" ''Mathematika'' , '''33''' (1986) pp. 87–95</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> K.H. Hofmann, K. Strambach, "Topological and analytic loops" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , ''Quasigroups and Loops - Theory and Applications'' , Heldermann (1990) pp. 205–262</TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> P.O. Miheev, L.V. Sabinin, "Quasigroups and differential geometry" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , ''Quasigroups and Loops - Theory and Applications'' , Heldermann (1990) pp. 357–430</TD></TR> | ||
+ | </table> | ||
− | + | {{TEX|done}} | |
− |
Latest revision as of 21:20, 18 December 2015
2020 Mathematics Subject Classification: Primary: 17A40 [MSN][ZBL]
A vector space over a field with an anti-symmetric bilinear multiplication $(x,y) \mapsto [x,y]$ and a multilinear ternary operation $(x,y,z) \mapsto \langle x,y,z\rangle$ which are linked by the so-called Akivis condition, defined as follows [a4], [a5]. Let $S_3$ denote the group of all six permutations and $A_3$ the subgroup of all three cyclic permutations of the set $\{1,2,3\}$. Define $J(x,y,z) = \sum_{\sigma \in A_3} \left[{\left[x_{\sigma(1)},x_{\sigma(2)}\right],x_{\sigma(3)}}\right]$. The Akivis condition reads: $$ \sum_{\sigma \in S_3} \mathrm{sgn}(\sigma) \left\langle x_{\sigma(1)},x_{\sigma(2)},x_{\sigma(3)}\right\rangle = J(x_1,x_2,x_3) \ . $$ The specialization $\langle x,y,z \rangle \equiv 0$ yields a Lie algebra. If $A$ is an arbitrary non-associative algebra over a field with a binary bilinear multiplication $(x,y) \mapsto x \cdot y$ (cf. also Non-associative rings and algebras), then $[x,y] = x \cdot y - y \cdot x$ and $\langle x,y,z \rangle = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ define an Akivis algebra on $A$. The tangent algebra of a local analytic loop (cf. Loop, analytic) is always an Akivis algebra. This generalizes the facts that the tangent algebra of a local Lie group (cf. also Lie group, local) is a Lie algebra and that the tangent algebra of a local Moufang loop is a Mal'tsev algebra. Analytic or differentiable quasi-groups (cf. Quasi-group) and loops arise in the study of the geometry of webs (cf. Web), [a2], [a3], [a5].
References
[a1] | M.A. Akivis, "The canonical expansions of the equations of a local analytic quasigroup" Soviet Math. Dokl. , 10 (1969) pp. 1200–1203 Dokl. Akad. Nauk SSSR , 188 (1969) pp. 967–970 |
[a2] | V.V. Goldberg, "Local differentiable quasigroups and webs" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 263–311 |
[a3] | V.V. Goldberg, "Theory of multicodimensional $(n+1)$-webs" , Kluwer Acad. Publ. (1988) |
[a4] | K.H. Hofmann, K. Strambach, "The Akivis algebra of a homogeneous loop" Mathematika , 33 (1986) pp. 87–95 |
[a5] | K.H. Hofmann, K. Strambach, "Topological and analytic loops" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 205–262 |
[a6] | P.O. Miheev, L.V. Sabinin, "Quasigroups and differential geometry" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 357–430 |
Akivis algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Akivis_algebra&oldid=34698