|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A generalization of the concept of a [[Rational function|rational function]] on an [[Algebraic variety|algebraic variety]]. Namely, a rational mapping from an irreducible algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776101.png" /> to an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776102.png" /> (both defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776103.png" />) is an equivalent class of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776104.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776105.png" /> is a non-empty open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776107.png" /> is a morphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776108.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776109.png" />. Two pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761011.png" /> are said to be equivalent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761013.png" /> coincide on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761014.png" />. In particular, a rational mapping from a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761015.png" /> to an affine line is a rational function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761016.png" />. For every rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761017.png" /> there is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761019.png" /> for all equivalent pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761021.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761023.png" />. The open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761024.png" /> is called the domain of regularity of the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761025.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761026.png" /> is the image of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761027.png" /> (written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761028.png" />) under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761029.png" />.
| + | <!-- |
| + | r0776101.png |
| + | $#A+1 = 57 n = 0 |
| + | $#C+1 = 57 : ~/encyclopedia/old_files/data/R077/R.0707610 Rational mapping |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761030.png" /> is a rational mapping of algebraic varieties and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761031.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761033.png" /> determines an imbedding of fields, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761034.png" />. Conversely, an imbedding of the fields of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761035.png" /> determines a rational mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761036.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761038.png" /> induces an isomorphism of the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761040.png" /> of rational functions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761041.png" /> is called a birational mapping.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The set of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761042.png" /> at which the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761043.png" /> is not regular has codimension 1, in general. But if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761044.png" /> is complete and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761045.png" /> is smooth and irreducible, then this set has codimension at least 2. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761047.png" /> are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761048.png" /> can be included in a commutative diagram (see [[#References|[2]]]):
| + | A generalization of the concept of a [[Rational function|rational function]] on an [[Algebraic variety|algebraic variety]]. Namely, a rational mapping from an irreducible algebraic variety $ X $ |
| + | to an algebraic variety $ Y $( |
| + | both defined over a field $ k $) |
| + | is an equivalent class of pairs $ ( U , \phi _ {U} ) $, |
| + | where $ U $ |
| + | is a non-empty open subset of $ X $ |
| + | and $ \phi _ {U} $ |
| + | is a morphism from $ U $ |
| + | to $ Y $. |
| + | Two pairs $ ( U , \phi _ {U} ) $ |
| + | and $ ( V , \psi _ {V} ) $ |
| + | are said to be equivalent if $ \phi _ {U} $ |
| + | and $ \psi _ {V} $ |
| + | coincide on $ U \cap V $. |
| + | In particular, a rational mapping from a variety $ X $ |
| + | to an affine line is a rational function on $ X $. |
| + | For every rational mapping $ \phi : X \rightarrow Y $ |
| + | there is a pair $ ( \widetilde{U} , \phi _ {\widetilde{U} } ) $ |
| + | such that $ U \subseteq \widetilde{U} $ |
| + | for all equivalent pairs $ ( U , \phi _ {U} ) $ |
| + | and $ \phi _ {U} $ |
| + | is the restriction of $ \phi _ {\widetilde{U} } $ |
| + | to $ U $. |
| + | The open subset $ \widetilde{U} $ |
| + | is called the domain of regularity of the rational mapping $ \phi $, |
| + | and $ \phi ( \widetilde{U} ) $ |
| + | is the image of the variety $ X $( |
| + | written $ \phi ( X) $) |
| + | under $ \phi $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | If $ \phi : X \rightarrow Y $ |
| + | is a rational mapping of algebraic varieties and $ \phi ( X) $ |
| + | is dense in $ Y $, |
| + | then $ \phi $ |
| + | determines an imbedding of fields, $ \phi ^ {*} : k ( Y) \rightarrow k ( Y) $. |
| + | Conversely, an imbedding of the fields of rational functions $ \phi ^ {*} : k ( Y) \rightarrow k ( Y) $ |
| + | determines a rational mapping from $ X $ |
| + | to $ Y $. |
| + | If $ \phi $ |
| + | induces an isomorphism of the fields $ k ( X) $ |
| + | and $ k ( Y) $ |
| + | of rational functions, then $ \phi $ |
| + | is called a birational mapping. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761051.png" /> are morphisms of an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761053.png" /> is a composite of monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761054.png" /> is a [[Birational mapping|birational mapping]] of complete non-singular surfaces, then there exists a diagram (*) in which both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761056.png" /> are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761057.png" />, the question of whether every birational mapping can be decomposed in this way is open (1990).
| + | The set of points of $ X $ |
| + | at which the rational mapping $ \phi : X \rightarrow Y $ |
| + | is not regular has codimension 1, in general. But if $ Y $ |
| + | is complete and $ X $ |
| + | is smooth and irreducible, then this set has codimension at least 2. If $ X $ |
| + | and $ Y $ |
| + | are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping $ \phi : X \rightarrow Y $ |
| + | can be included in a commutative diagram (see [[#References|[2]]]): |
| + | |
| + | $$ \tag{* } |
| + | |
| + | \begin{array}{ccc} |
| + | {} & Z &{} \\ |
| + | {} _ \eta \swarrow &{} &\searrow _ {f} \\ |
| + | X & \mathop \rightarrow \limits _ \phi & Y \\ |
| + | \end{array} |
| + | |
| + | $$ |
| + | |
| + | where $ \eta $, |
| + | $ f $ |
| + | are morphisms of an algebraic variety $ Z $ |
| + | and $ \eta $ |
| + | is a composite of monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]). If $ \phi : X \rightarrow Y $ |
| + | is a [[Birational mapping|birational mapping]] of complete non-singular surfaces, then there exists a diagram (*) in which both $ f $ |
| + | and $ \eta $ |
| + | are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when $ \mathop{\rm dim} X \geq 3 $, |
| + | the question of whether every birational mapping can be decomposed in this way is open (1990). |
| | | |
| ====References==== | | ====References==== |
A generalization of the concept of a rational function on an algebraic variety. Namely, a rational mapping from an irreducible algebraic variety $ X $
to an algebraic variety $ Y $(
both defined over a field $ k $)
is an equivalent class of pairs $ ( U , \phi _ {U} ) $,
where $ U $
is a non-empty open subset of $ X $
and $ \phi _ {U} $
is a morphism from $ U $
to $ Y $.
Two pairs $ ( U , \phi _ {U} ) $
and $ ( V , \psi _ {V} ) $
are said to be equivalent if $ \phi _ {U} $
and $ \psi _ {V} $
coincide on $ U \cap V $.
In particular, a rational mapping from a variety $ X $
to an affine line is a rational function on $ X $.
For every rational mapping $ \phi : X \rightarrow Y $
there is a pair $ ( \widetilde{U} , \phi _ {\widetilde{U} } ) $
such that $ U \subseteq \widetilde{U} $
for all equivalent pairs $ ( U , \phi _ {U} ) $
and $ \phi _ {U} $
is the restriction of $ \phi _ {\widetilde{U} } $
to $ U $.
The open subset $ \widetilde{U} $
is called the domain of regularity of the rational mapping $ \phi $,
and $ \phi ( \widetilde{U} ) $
is the image of the variety $ X $(
written $ \phi ( X) $)
under $ \phi $.
If $ \phi : X \rightarrow Y $
is a rational mapping of algebraic varieties and $ \phi ( X) $
is dense in $ Y $,
then $ \phi $
determines an imbedding of fields, $ \phi ^ {*} : k ( Y) \rightarrow k ( Y) $.
Conversely, an imbedding of the fields of rational functions $ \phi ^ {*} : k ( Y) \rightarrow k ( Y) $
determines a rational mapping from $ X $
to $ Y $.
If $ \phi $
induces an isomorphism of the fields $ k ( X) $
and $ k ( Y) $
of rational functions, then $ \phi $
is called a birational mapping.
The set of points of $ X $
at which the rational mapping $ \phi : X \rightarrow Y $
is not regular has codimension 1, in general. But if $ Y $
is complete and $ X $
is smooth and irreducible, then this set has codimension at least 2. If $ X $
and $ Y $
are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping $ \phi : X \rightarrow Y $
can be included in a commutative diagram (see [2]):
$$ \tag{* }
\begin{array}{ccc}
{} & Z &{} \\
{} _ \eta \swarrow &{} &\searrow _ {f} \\
X & \mathop \rightarrow \limits _ \phi & Y \\
\end{array}
$$
where $ \eta $,
$ f $
are morphisms of an algebraic variety $ Z $
and $ \eta $
is a composite of monoidal transformations (cf. Monoidal transformation). If $ \phi : X \rightarrow Y $
is a birational mapping of complete non-singular surfaces, then there exists a diagram (*) in which both $ f $
and $ \eta $
are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when $ \mathop{\rm dim} X \geq 3 $,
the question of whether every birational mapping can be decomposed in this way is open (1990).
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero I" Ann. of Math. , 79 : 1–2 (1964) pp. 109–326 MR0199184 Zbl 0122.38603 |