Namespaces
Variants
Actions

Difference between revisions of "Free associative algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Commen: The monoid algebra for the free monoid, cite Cohn (2003))
m (gather refs)
 
(4 intermediate revisions by 2 users not shown)
Line 20: Line 20:
  
 
4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem).
 
4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem).
 
====References====
 
<table>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  P.M. Cohn,  "Free rings and their relations" , Acad. Press  (1971)</TD></TR>
 
</table>
 
  
 
====Comments====
 
====Comments====
The free associative algebra $k \langle X \rangle$ is the monoid algebra over $k$ for the free monoid on $X$: cf [[Semi-group algebra]], [[Free semi-group]].
+
The free associative algebra $k \langle X \rangle$ is the [[monoid algebra]] over $k$ for the [[free monoid]] on $X$.
  
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[3]</TD> <TD valign="top"> Paul M. Cohn, ''Basic Algebra: Groups, Rings, and Fields'', Springer (2003) ISBN 1852335874.  Zbl 1003.00001</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> P.M. Cohn, "Universal algebra" , Reidel  (1981)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press  (1971)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> Paul M. Cohn, ''Basic Algebra: Groups, Rings, and Fields'', Springer (2003) {{ISBN|1852335874}}{{ZBL|1003.00001}}</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> M. Lothaire, ''Algebraic Combinatorics on Words'', Encyclopedia of Mathematics and its Applications '''90''', Cambridge University Press (2002)  {{ISBN|0-521-81220-8}}.  {{ZBL|1001.68093}}</TD></TR>
 
</table>
 
</table>
 +
 
[[Category:Associative rings and algebras]]
 
[[Category:Associative rings and algebras]]

Latest revision as of 20:41, 16 November 2023

The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are:

1) $k\langle X \rangle$ can be imbedded in a skew-field (the Mal'tsev–Neumann theorem);

2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation $$ d \left({ \sum_{i=1}^n a_i b_i }\right) < \max_i \{ d(a_i) + d(b_i) \} $$ where $a_i, b_i \in k\langle X \rangle$, all the $a_i$ are non-zero ($i = 1,\ldots,n$), $d(a_1) \le \cdots \le d(a_n)$, always implies that there are an integer $r$, $1 < r \le n$, and elements $c_,\ldots,c_{r-1}$ such that $$ d\left({ a_r - \sum_{i=1}^{r-1} a_i c_i }\right) < d(a_r) $$ and $$ d(a_i) + d(c_i) < d(a_r),\ \ \ i=1,\ldots,r-1 $$ (here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$);

3) $k\langle X \rangle$ is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank);

4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem).

Comments

The free associative algebra $k \langle X \rangle$ is the monoid algebra over $k$ for the free monoid on $X$.

References

[1] P.M. Cohn, "Universal algebra" , Reidel (1981)
[2] P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)
[3] Paul M. Cohn, Basic Algebra: Groups, Rings, and Fields, Springer (2003) ISBN 1852335874. Zbl 1003.00001
[4] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 90, Cambridge University Press (2002) ISBN 0-521-81220-8. Zbl 1001.68093
How to Cite This Entry:
Free associative algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Free_associative_algebra&oldid=33691
This article was adapted from an original article by L.A. Bokut (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article