Difference between revisions of "Free associative algebra"
(LaTeX) |
m (gather refs) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are: | The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are: | ||
− | 1) $k\langle X \rangle$ can be imbedded in a skew-field (the Mal'tsev–Neumann theorem); | + | 1) $k\langle X \rangle$ can be imbedded in a [[skew-field]] (the Mal'tsev–Neumann theorem); |
2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation | 2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation | ||
Line 17: | Line 17: | ||
(here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$); | (here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$); | ||
− | 3) $k\langle X \rangle$ is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank); | + | 3) $k\langle X \rangle$ is a left (respectively, right) [[free ideal ring]] (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank); |
4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem). | 4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem). | ||
+ | |||
+ | ====Comments==== | ||
+ | The free associative algebra $k \langle X \rangle$ is the [[monoid algebra]] over $k$ for the [[free monoid]] on $X$. | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.M. Cohn, "Universal algebra" , Reidel (1981)</TD></TR> |
− | <TR><TD valign="top">[2]</TD> <TD valign="top"> | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)</TD></TR> |
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> Paul M. Cohn, ''Basic Algebra: Groups, Rings, and Fields'', Springer (2003) {{ISBN|1852335874}}. {{ZBL|1003.00001}}</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> M. Lothaire, ''Algebraic Combinatorics on Words'', Encyclopedia of Mathematics and its Applications '''90''', Cambridge University Press (2002) {{ISBN|0-521-81220-8}}. {{ZBL|1001.68093}}</TD></TR> | ||
</table> | </table> | ||
+ | |||
+ | [[Category:Associative rings and algebras]] |
Latest revision as of 20:41, 16 November 2023
The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are:
1) $k\langle X \rangle$ can be imbedded in a skew-field (the Mal'tsev–Neumann theorem);
2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation $$ d \left({ \sum_{i=1}^n a_i b_i }\right) < \max_i \{ d(a_i) + d(b_i) \} $$ where $a_i, b_i \in k\langle X \rangle$, all the $a_i$ are non-zero ($i = 1,\ldots,n$), $d(a_1) \le \cdots \le d(a_n)$, always implies that there are an integer $r$, $1 < r \le n$, and elements $c_,\ldots,c_{r-1}$ such that $$ d\left({ a_r - \sum_{i=1}^{r-1} a_i c_i }\right) < d(a_r) $$ and $$ d(a_i) + d(c_i) < d(a_r),\ \ \ i=1,\ldots,r-1 $$ (here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$);
3) $k\langle X \rangle$ is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank);
4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem).
Comments
The free associative algebra $k \langle X \rangle$ is the monoid algebra over $k$ for the free monoid on $X$.
References
[1] | P.M. Cohn, "Universal algebra" , Reidel (1981) |
[2] | P.M. Cohn, "Free rings and their relations" , Acad. Press (1971) |
[3] | Paul M. Cohn, Basic Algebra: Groups, Rings, and Fields, Springer (2003) ISBN 1852335874. Zbl 1003.00001 |
[4] | M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 90, Cambridge University Press (2002) ISBN 0-521-81220-8. Zbl 1001.68093 |
Free associative algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Free_associative_algebra&oldid=33684