Namespaces
Variants
Actions

Difference between revisions of "Catalan surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (zbl link)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Catalan,  "Mémoire sur les surfaces gauches à plan directeur" , Paris  (1843)</TD></TR></table>
 
  
 
+
* {{Ref|1}} E. Catalan, "Mémoire sur les surfaces gauches à plan directeur" , Paris  (1843)
 
+
* {{Ref|a1}} W. Klingenberg, "A course in differential geometry" , Springer  (1978)  (Translated from German) {{ZBL|0366.53001}}
====Comments====
+
* {{Ref|a2}} R.S. Millman, G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 31–35 {{ZBL|0425.53001}}
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Klingenberg,   "A course in differential geometry" , Springer  (1978)  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.S. Millman,   G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 31–35</TD></TR></table>
 

Latest revision as of 07:34, 17 March 2023

A ruled surface whose rectilinear generators are all parallel to the same plane. Its line of restriction (cf. Ruled surface) is planar. The position vector of a Catalan surface is $r=\rho(u)+vl(u)$, where $l''(u)\neq0$, $(l,l',l'')=0$. If all the generators of a Catalan surface intersect the same straight line, then the surface is a conoid.

References

  • [1] E. Catalan, "Mémoire sur les surfaces gauches à plan directeur" , Paris (1843)
  • [a1] W. Klingenberg, "A course in differential geometry" , Springer (1978) (Translated from German) Zbl 0366.53001
  • [a2] R.S. Millman, G.D. Parker, "Elements of differential geometry" , Prentice-Hall (1977) pp. 31–35 Zbl 0425.53001
How to Cite This Entry:
Catalan surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catalan_surface&oldid=31979
This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article