Difference between revisions of "CR-manifold"
m |
m (→References: latexify) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c1104701.png | ||
+ | $#A+1 = 67 n = 1 | ||
+ | $#C+1 = 67 : ~/encyclopedia/old_files/data/C110/C.1100470 CR\AAhmanifold | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | In 1907, H. Poincaré wrote a seminal paper, [[#References|[a6]]], in which he showed that two real hypersurfaces in $ \mathbf C ^ {2} $ | |
+ | are, in general, biholomorphically inequivalent (cf. [[Biholomorphic mapping|Biholomorphic mapping]]; [[Hypersurface|Hypersurface]]). Later, E. Cartan [[#References|[a10]]], [[#References|[a11]]] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [[#References|[a3]]] and N. Tanaka [[#References|[a8]]], [[#References|[a7]]]. | ||
− | + | The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of $ \mathbf C ^ {n} $, | |
+ | $ n \geq 2 $. | ||
− | + | Let $ M $ | |
+ | be a real [[Differentiable manifold|differentiable manifold]] and $ TM $ | ||
+ | the [[Tangent bundle|tangent bundle]] of $ M $. | ||
+ | One says that $ M $ | ||
+ | is a CR-manifold if there exists a complex subbundle $ H $ | ||
+ | of the complexified tangent bundle $ \mathbf C \otimes TM $ | ||
+ | satisfying the conditions: | ||
− | + | $ H \cap {\overline{H}\; } = \{ 0 \} $; | |
− | + | $ H $ | |
+ | is involutive, i.e., for any complex vector fields $ U $ | ||
+ | and $ V $ | ||
+ | in $ H $ | ||
+ | the [[Lie bracket|Lie bracket]] $ [ U,V ] $ | ||
+ | is also in $ H $. | ||
− | + | Alternatively, by using real vector bundles it can be proved (cf. [[#References|[a1]]]) that $ M $ | |
+ | is a CR-manifold if and only if there exists an almost-complex distribution $ ( D,J ) $ | ||
+ | on $ M $( | ||
+ | i.e., $ D $ | ||
+ | is a vector subbundle of $ TM $ | ||
+ | and $ J $ | ||
+ | is an [[Almost-complex structure|almost-complex structure]] on $ D $) | ||
+ | such that | ||
− | + | $ [ JX,JY ] - [ X,Y ] $ | |
+ | lies in $ D $; | ||
− | + | $ [ JX,JY ] - [ X,Y ] - J ( [ JX,Y ] + [ X,JY ] ) = 0 $ | |
+ | for any real vector fields $ X $, | ||
+ | $ Y $ | ||
+ | in $ D $. | ||
− | + | Thus the CR-structure on $ M $ | |
+ | is determined either by the complex vector bundle $ H $ | ||
+ | or by the almost-complex distribution $ ( D,J ) $. | ||
+ | The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for $ M $ | ||
+ | in $ \mathbf C ^ {n} $, | ||
+ | $ H $ | ||
+ | consists of the induced Cauchy–Riemann operators (cf. [[Cauchy-Riemann equations]]). | ||
− | + | A $ C ^ {1} $- | |
+ | function $ f : {( M,H ) } \rightarrow \mathbf C $ | ||
+ | is called a CR-function if $ Lf = 0 $ | ||
+ | for all complex vector fields $ L $ | ||
+ | in $ H $. | ||
+ | A $ C ^ {1} $- | ||
+ | mapping $ F : {( M,H ) } \rightarrow {( {\widetilde{M} } , {\widetilde{H} } ) } $ | ||
+ | is said to be a CR-mapping if $ F _ {*} H \subset {\widetilde{H} } $, | ||
+ | where $ F _ {*} $ | ||
+ | is the tangent mapping of $ F $. | ||
+ | In particular, if $ F $ | ||
+ | is a [[Diffeomorphism|diffeomorphism]], one says that $ F $ | ||
+ | is a pseudo-conformal mapping and that $ M $ | ||
+ | and $ {\widetilde{M} } $ | ||
+ | are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on $ M $ | ||
+ | is said to be realizable if $ M $ | ||
+ | is equivalent to some real hypersurface of a complex Euclidean space. | ||
− | + | Let $ \pi : {\mathbf C \otimes TM } \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } $ | |
+ | be the natural projection mapping. Then the Levi form for $ M $ | ||
+ | is the mapping | ||
− | for any complex vector field | + | $$ |
+ | h : H \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | h ( U ) = { | ||
+ | \frac{1}{2i } | ||
+ | } \pi ( [ U, {\overline{U}\; } ] ) , | ||
+ | $$ | ||
+ | |||
+ | for any complex vector field $ U $ | ||
+ | in $ H $. | ||
+ | If $ M $ | ||
+ | is the real hypersurface in $ \mathbf C ^ {n} $ | ||
+ | given by the equation $ g ( z ) = 0 $, | ||
+ | where $ g : {\mathbf C ^ {n} } \rightarrow \mathbf R $ | ||
+ | is smooth, then the Levi form for $ M $ | ||
+ | is identified with the restriction of the complex Hessian of $ g $ | ||
+ | to $ H $( | ||
+ | cf. also [[Hessian matrix|Hessian matrix]]). When $ h $ | ||
+ | is positive- or negative-definite on $ M $, | ||
+ | one says that $ M $ | ||
+ | is strictly pseudo-convex. | ||
The differential geometry of CR-manifolds (cf. [[#References|[a4]]]) has potential applications to both partial differential equations (cf. [[#References|[a2]]]) and mathematical physics (cf. [[#References|[a5]]] and [[#References|[a9]]]). | The differential geometry of CR-manifolds (cf. [[#References|[a4]]]) has potential applications to both partial differential equations (cf. [[#References|[a2]]]) and mathematical physics (cf. [[#References|[a5]]] and [[#References|[a9]]]). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.S. Chern, J. Moser, "Real hypersurfaces in complex manifolds" ''Acta Math.'' , '''133''' (1974) pp. 219–271</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Jacobowitz, "An introduction to CR structures" , ''Math. Surveys and Monographs'' , '''32''' , Amer. Math. Soc. (1990)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Penrose, "Physical space-time and non-realizable CR structures" , ''Proc. Symp. Pure Math.'' , '''39''' , Amer. Math. Soc. (1983) pp. 401–422</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Poincaré, "Les | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986)</TD></TR> |
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> S.S. Chern, J. Moser, "Real hypersurfaces in complex manifolds" ''Acta Math.'' , '''133''' (1974) pp. 219–271</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Jacobowitz, "An introduction to CR structures" , ''Math. Surveys and Monographs'' , '''32''' , Amer. Math. Soc. (1990)</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Penrose, "Physical space-time and non-realizable CR structures" , ''Proc. Symp. Pure Math.'' , '''39''' , Amer. Math. Soc. (1983) pp. 401–422</TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Poincaré, "Les fonctions analytiques de deux variables et la représentation conforme" ''Rend. Circ. Mat. Palermo'' , '''23''' (1907) pp. 185–220</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> N. Tanaka, "On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables" ''J. Math. Soc. Japan'' , '''14''' (1962) pp. 397–429</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> N. Tanaka, "On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections" ''Japan J. Math. (N.S.)'' , '''2''' (1976) pp. 131–190</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> J.R. Wells, Jr., "Complex manifolds and mathematical physics" ''Bull. Amer. Math. Soc. (N.S.)'' , '''1''' (1979) pp. 296–336</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I." ''Ann. Mathém.'' , '''11''' (1932) pp. 17–90</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II." ''Ann. Scuola Norm. Sup. Pisa'' , '''1''' (1932) pp. 333–354</TD></TR> | ||
+ | </table> |
Latest revision as of 11:07, 26 March 2023
In 1907, H. Poincaré wrote a seminal paper, [a6], in which he showed that two real hypersurfaces in $ \mathbf C ^ {2} $
are, in general, biholomorphically inequivalent (cf. Biholomorphic mapping; Hypersurface). Later, E. Cartan [a10], [a11] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [a3] and N. Tanaka [a8], [a7].
The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of $ \mathbf C ^ {n} $, $ n \geq 2 $.
Let $ M $ be a real differentiable manifold and $ TM $ the tangent bundle of $ M $. One says that $ M $ is a CR-manifold if there exists a complex subbundle $ H $ of the complexified tangent bundle $ \mathbf C \otimes TM $ satisfying the conditions:
$ H \cap {\overline{H}\; } = \{ 0 \} $;
$ H $ is involutive, i.e., for any complex vector fields $ U $ and $ V $ in $ H $ the Lie bracket $ [ U,V ] $ is also in $ H $.
Alternatively, by using real vector bundles it can be proved (cf. [a1]) that $ M $ is a CR-manifold if and only if there exists an almost-complex distribution $ ( D,J ) $ on $ M $( i.e., $ D $ is a vector subbundle of $ TM $ and $ J $ is an almost-complex structure on $ D $) such that
$ [ JX,JY ] - [ X,Y ] $ lies in $ D $;
$ [ JX,JY ] - [ X,Y ] - J ( [ JX,Y ] + [ X,JY ] ) = 0 $ for any real vector fields $ X $, $ Y $ in $ D $.
Thus the CR-structure on $ M $ is determined either by the complex vector bundle $ H $ or by the almost-complex distribution $ ( D,J ) $. The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for $ M $ in $ \mathbf C ^ {n} $, $ H $ consists of the induced Cauchy–Riemann operators (cf. Cauchy-Riemann equations).
A $ C ^ {1} $- function $ f : {( M,H ) } \rightarrow \mathbf C $ is called a CR-function if $ Lf = 0 $ for all complex vector fields $ L $ in $ H $. A $ C ^ {1} $- mapping $ F : {( M,H ) } \rightarrow {( {\widetilde{M} } , {\widetilde{H} } ) } $ is said to be a CR-mapping if $ F _ {*} H \subset {\widetilde{H} } $, where $ F _ {*} $ is the tangent mapping of $ F $. In particular, if $ F $ is a diffeomorphism, one says that $ F $ is a pseudo-conformal mapping and that $ M $ and $ {\widetilde{M} } $ are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on $ M $ is said to be realizable if $ M $ is equivalent to some real hypersurface of a complex Euclidean space.
Let $ \pi : {\mathbf C \otimes TM } \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } $ be the natural projection mapping. Then the Levi form for $ M $ is the mapping
$$ h : H \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } , $$
$$ h ( U ) = { \frac{1}{2i } } \pi ( [ U, {\overline{U}\; } ] ) , $$
for any complex vector field $ U $ in $ H $. If $ M $ is the real hypersurface in $ \mathbf C ^ {n} $ given by the equation $ g ( z ) = 0 $, where $ g : {\mathbf C ^ {n} } \rightarrow \mathbf R $ is smooth, then the Levi form for $ M $ is identified with the restriction of the complex Hessian of $ g $ to $ H $( cf. also Hessian matrix). When $ h $ is positive- or negative-definite on $ M $, one says that $ M $ is strictly pseudo-convex.
The differential geometry of CR-manifolds (cf. [a4]) has potential applications to both partial differential equations (cf. [a2]) and mathematical physics (cf. [a5] and [a9]).
References
[a1] | A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986) |
[a2] | A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991) |
[a3] | S.S. Chern, J. Moser, "Real hypersurfaces in complex manifolds" Acta Math. , 133 (1974) pp. 219–271 |
[a4] | H. Jacobowitz, "An introduction to CR structures" , Math. Surveys and Monographs , 32 , Amer. Math. Soc. (1990) |
[a5] | R. Penrose, "Physical space-time and non-realizable CR structures" , Proc. Symp. Pure Math. , 39 , Amer. Math. Soc. (1983) pp. 401–422 |
[a6] | H. Poincaré, "Les fonctions analytiques de deux variables et la représentation conforme" Rend. Circ. Mat. Palermo , 23 (1907) pp. 185–220 |
[a7] | N. Tanaka, "On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables" J. Math. Soc. Japan , 14 (1962) pp. 397–429 |
[a8] | N. Tanaka, "On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections" Japan J. Math. (N.S.) , 2 (1976) pp. 131–190 |
[a9] | J.R. Wells, Jr., "Complex manifolds and mathematical physics" Bull. Amer. Math. Soc. (N.S.) , 1 (1979) pp. 296–336 |
[a10] | É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I." Ann. Mathém. , 11 (1932) pp. 17–90 |
[a11] | É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II." Ann. Scuola Norm. Sup. Pisa , 1 (1932) pp. 333–354 |
CR-manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=CR-manifold&oldid=31185