Difference between revisions of "Möbius function"
m (→References: isbn link) |
|||
(7 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | The Möbius function is an | + | The Möbius function is an [[arithmetic function]] of a natural number argument with \mu(1)=1, \mu(n)=0 if n is divisible by the square of a prime number, otherwise \mu(n) = (-1)^k, where k is the number of prime factors of n. This function was introduced by A. Möbius in 1832. |
− | [[ | ||
The Möbius function is a | The Möbius function is a | ||
Line 14: | Line 13: | ||
where c is a constant. The fact that the mean value tends to zero as x\to \infty implies an asymptotic law for the | where c is a constant. The fact that the mean value tends to zero as x\to \infty implies an asymptotic law for the | ||
[[Distribution of prime numbers|distribution of prime numbers]] in the natural series. | [[Distribution of prime numbers|distribution of prime numbers]] in the natural series. | ||
+ | |||
+ | The Möbius function satisfies the explicit formula | ||
+ | |||
+ | \sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\rho}\frac{h( \gamma)}{\zeta '( \rho )}+\sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x} | ||
+ | |||
+ | Where g(u)= \frac{1}{2\pi} \int_{-\infty}^\infty h(x)\exp(-iux) | ||
+ | |||
+ | form a Fourier transformation pair | ||
+ | |||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
− | The multiplicative arithmetic functions form a | + | |
− | [[ | + | The multiplicative arithmetic functions form a [[group]] under the convolution product (f*g)(n) = \sum_{d|n}f(d)g(n/d). The Möbius function is in fact the inverse of the constant multiplicative function E (defined by E(n)=1 for all n\in \N) under this convolution product. From this there follows many "inversion formulas", cf. [[Möbius inversion]]. |
− | [[ | + | |
+ | For the Möbius function associated to a [[partially ordered set]], see [[Enumeration theory]]. In this context, the arithmetic Möbius function defined in this article appears as the function associated to the natural numbers ordered by divisibility. | ||
====References==== | ====References==== | ||
{| | {| | ||
|- | |- | ||
− | |valign="top"|{{Ref|HaWr}}||valign="top"| G.H. Hardy, E.M. Wright, | + | |valign="top"|{{Ref|HaWr}}||valign="top"| G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1979) {{MR|0568909}} |
+ | |- | ||
+ | |valign="top"|{{Ref|Vi}}||valign="top"| I.M. Vinogradov, "Elements of number theory", Dover, reprint (1954) (Translated from Russian) {{MR|0062138}} | ||
|- | |- | ||
− | |valign="top"|{{Ref| | + | |valign="top"|{{Ref|Wa}}||valign="top"| A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie", Deutsch. Verlag Wissenschaft. (1963) {{MR|0220685}} |
|- | |- | ||
− | |valign="top"|{{Ref| | + | |valign="top"|{{Ref|KRY}}||valign="top"| Kung, Joseph P. S.; Rota, Gian-Carlo; Yan, Catherine H. ''Combinatorics. The Rota way''. Cambridge University Press (2009) {{ISBN|978-0-521-73794-4}} {{ZBL|1159.05002}} |
|- | |- | ||
|} | |} |
Latest revision as of 08:19, 4 November 2023
2020 Mathematics Subject Classification: Primary: 11A [MSN][ZBL]
The Möbius function is an arithmetic function of a natural number argument n with \mu(1)=1, \mu(n)=0 if n is divisible by the square of a prime number, otherwise \mu(n) = (-1)^k, where k is the number of prime factors of n. This function was introduced by A. Möbius in 1832.
The Möbius function is a multiplicative arithmetic function; \sum_{d|n}\mu(d) = 0 if n>1. It is used in the study of other arithmetic functions; it appears in inversion formulas (see, e.g. Möbius series). The following estimate is known for the mean value of the Möbius function [Wa]:
{1\over x}\Big|\sum_{n\le x}\mu(n)\Big| \le \exp\{-c \ln^{3/5} x(\ln\ln x)^{-1/5} \},
where c is a constant. The fact that the mean value tends to zero as x\to \infty implies an asymptotic law for the distribution of prime numbers in the natural series.
The Möbius function satisfies the explicit formula
\sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\rho}\frac{h( \gamma)}{\zeta '( \rho )}+\sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x}
Where g(u)= \frac{1}{2\pi} \int_{-\infty}^\infty h(x)\exp(-iux)
form a Fourier transformation pair
Comments
The multiplicative arithmetic functions form a group under the convolution product (f*g)(n) = \sum_{d|n}f(d)g(n/d). The Möbius function is in fact the inverse of the constant multiplicative function E (defined by E(n)=1 for all n\in \N) under this convolution product. From this there follows many "inversion formulas", cf. Möbius inversion.
For the Möbius function associated to a partially ordered set, see Enumeration theory. In this context, the arithmetic Möbius function defined in this article appears as the function associated to the natural numbers ordered by divisibility.
References
[HaWr] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1979) MR0568909 |
[Vi] | I.M. Vinogradov, "Elements of number theory", Dover, reprint (1954) (Translated from Russian) MR0062138 |
[Wa] | A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie", Deutsch. Verlag Wissenschaft. (1963) MR0220685 |
[KRY] | Kung, Joseph P. S.; Rota, Gian-Carlo; Yan, Catherine H. Combinatorics. The Rota way. Cambridge University Press (2009) ISBN 978-0-521-73794-4 Zbl 1159.05002 |
Möbius function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_function&oldid=30484