Namespaces
Variants
Actions

Difference between revisions of "Srivastava code"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Srivastava code)
 
m (→‎References: isbn link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
A  class of parameterised [[error-correcting code]]s.  They are block  linear codes which are a special case of [[alternant code]]s.
 
A  class of parameterised [[error-correcting code]]s.  They are block  linear codes which are a special case of [[alternant code]]s.
  
Line 14: Line 15:
  
 
== References ==
 
== References ==
* F.J. MacWilliams. ''The  Theory of Error-Correcting Codes'' (North-Holland, 1977) ISBN 0-444-85193-3. pp.357-360
+
* F.J. MacWilliams. ''The  Theory of Error-Correcting Codes'' (North-Holland, 1977) {{ISBN|0-444-85193-3}}. pp.357-360

Latest revision as of 07:25, 14 November 2023

A class of parameterised error-correcting codes. They are block linear codes which are a special case of alternant codes.

The original Srivastava code of length $n$ and parameter $s$ over $GF(q)$ is defined by an $n \times s$ parity check matrix $H$ of alternant form $$ \begin{bmatrix} \frac{\alpha_1^\mu}{\alpha_1-w_1} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_1} \\ \vdots & \ddots & \vdots \\ \frac{\alpha_1^\mu}{\alpha_1-w_s} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_s} \\ \end{bmatrix} $$ where the $\alpha_i$ and $z_i$ are elements of $GF(q^m)$.

The parameters of this code are length $n$, dimension $\ge n - ms$ and minimum distance $\ge s+1$.

References

  • F.J. MacWilliams. The Theory of Error-Correcting Codes (North-Holland, 1977) ISBN 0-444-85193-3. pp.357-360
How to Cite This Entry:
Srivastava code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Srivastava_code&oldid=30477