Difference between revisions of "Szpiro's conjecture"
(Start article: Szpiro's conjecture) |
m (→References: isbn link) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
+ | {{MSC|11Gxx}} | ||
+ | |||
− | |||
A conjectural relationship between the [[conductor of an elliptic curve|conductor]] and the [[discriminant of an elliptic curve|discriminant]] of an [[elliptic curve]]. In a general form, it is equivalent to the well-known [[ABC conjecture]]. It is named for [[Lucien Szpiro]] who formulated it in the 1980s. | A conjectural relationship between the [[conductor of an elliptic curve|conductor]] and the [[discriminant of an elliptic curve|discriminant]] of an [[elliptic curve]]. In a general form, it is equivalent to the well-known [[ABC conjecture]]. It is named for [[Lucien Szpiro]] who formulated it in the 1980s. | ||
Line 13: | Line 15: | ||
==References== | ==References== | ||
− | * Lang, Serge; ''Survey of Diophantine geometry'' | + | * Lang, Serge; ''Survey of Diophantine geometry'' (1997), p. 51, Springer-Verlag, {{ZBL|0869.11051}} {{ISBN|3-540-61223-8}} |
− | * Szpiro, L.; '' | + | * Szpiro, L.; ''Séminaire sur les pinceaux des courbes de genre au moins deux'', Astérisque, '''86''' (1981), pp. 44-78, {{ZBL|0463.00009}} |
− | * Szpiro, L.; '' | + | * Szpiro, L.; ''Présentation de la théorie d'Arakelov'', Contemp. Math., '''67''' (1987), pp. 279-293, {{ZBL|0634.14012}} |
Latest revision as of 09:03, 26 November 2023
2020 Mathematics Subject Classification: Primary: 11Gxx [MSN][ZBL]
A conjectural relationship between the conductor and the discriminant of an elliptic curve. In a general form, it is equivalent to the well-known ABC conjecture. It is named for Lucien Szpiro who formulated it in the 1980s.
The conjecture states that: given $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve $E$ defined over $\mathbb{Q}$ with minimal discriminant $\Delta$ and conductor $f$, we have $$ \vert\Delta\vert \leq C(\varepsilon ) \cdot f^{6+\varepsilon } \ . $$ The modified Szpiro conjecture states that: given $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve $E$ defined over $\mathbb{Q}$ with invariants $c_4,c_6$ and conductor $f$, we have $$ \max\{\vert c_4\vert^3,\vert c_6\vert^2\} \leq C(\varepsilon )\cdot f^{6+\varepsilon } \ . $$
References
- Lang, Serge; Survey of Diophantine geometry (1997), p. 51, Springer-Verlag, Zbl 0869.11051 ISBN 3-540-61223-8
- Szpiro, L.; Séminaire sur les pinceaux des courbes de genre au moins deux, Astérisque, 86 (1981), pp. 44-78, Zbl 0463.00009
- Szpiro, L.; Présentation de la théorie d'Arakelov, Contemp. Math., 67 (1987), pp. 279-293, Zbl 0634.14012
Szpiro's conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Szpiro%27s_conjecture&oldid=30396