|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | The basic idea is that a partial differential equation is given by a set of functions in a jet bundle, which is natural because after all a (partial) differential equation is a relation between a function, its dependent variables and its derivatives up to a certain order. In the sequel, all manifolds and mappings are either all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716401.png" /> or all real-analytic.
| + | <!-- |
| + | p0716401.png |
| + | $#A+1 = 141 n = 0 |
| + | $#C+1 = 141 : ~/encyclopedia/old_files/data/P071/P.0701640 Partial differential equations on a manifold |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A fibred manifold is a triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716402.png" /> consisting of two manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716403.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716404.png" /> and a differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716405.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716406.png" /> is surjective for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716407.png" />. An example is a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716408.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p0716409.png" />. This means that locally around each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164010.png" /> the situation looks like the canonical projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164011.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164013.png" />). A cross section over an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164014.png" /> is a differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164016.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164018.png" />-jet of cross sections at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164019.png" /> is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164021.png" />, are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164022.png" />-jet equivalent at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164023.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164024.png" /> and if for some (hence for all) coordinate systems around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164026.png" /> one has
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164027.png" /></td> </tr></table>
| + | The basic idea is that a partial differential equation is given by a set of functions in a jet bundle, which is natural because after all a (partial) differential equation is a relation between a function, its dependent variables and its derivatives up to a certain order. In the sequel, all manifolds and mappings are either all $ C ^ \infty $ |
| + | or all real-analytic. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164030.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164031.png" /> be the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164032.png" />-jets. In local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164033.png" /> looks like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164035.png" />. It readily follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164036.png" /> is a manifold with local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164037.png" />, [[#References|[a2]]], [[#References|[a5]]]. The differentiable bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164038.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164039.png" />-th jet bundle of the fibred manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164040.png" />. For the case of a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164041.png" /> see also [[Linear differential operator|Linear differential operator]]; for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164042.png" /> one finds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164043.png" />, the jet bundle of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164044.png" />. There are natural fibre bundle mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164045.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164046.png" />, defined in local coordinates by forgetting about the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164047.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164048.png" />. It is convenient to set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164050.png" />, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164051.png" /> is defined in the same way (forget about all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164052.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164053.png" />).
| + | A fibred manifold is a triple $ ( M, N, \pi ) $ |
| + | consisting of two manifolds $ M $, |
| + | $ N $ |
| + | and a differentiable mapping $ \pi : M \rightarrow N $ |
| + | such that $ d \pi ( m) : T _ {m} M \rightarrow T _ {\pi ( m) } N $ |
| + | is surjective for all $ m \in M $. |
| + | An example is a vector bundle $ ( E, N, \pi ) $ |
| + | over $ N $. |
| + | This means that locally around each $ m \in M $ |
| + | the situation looks like the canonical projection $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $( |
| + | $ \mathop{\rm dim} M= m+ n $, |
| + | $ \mathop{\rm dim} N= n $). |
| + | A cross section over an open set $ U \subset N $ |
| + | is a differentiable mapping $ s: U \rightarrow \pi ^ {-1} ( U) \subset M $ |
| + | such that $ \pi \circ s = \mathop{\rm id} $. |
| + | An $ r $-jet of cross sections at $ x \in N $ |
| + | is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $, |
| + | $ i= 1, 2 $, |
| + | are $ r $-jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $ |
| + | if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $ |
| + | and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $ |
| + | and $ x _ {0} $ |
| + | one has |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164054.png" /> be the [[Sheaf|sheaf]] of (germs of) differentiable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164055.png" />. It is a sheaf of rings. A subsheaf of ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164057.png" /> is a system of partial differential equations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164059.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164060.png" />. A solution of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164061.png" /> is a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164062.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164063.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164064.png" />. The set of integral points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164066.png" /> (i.e. the zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164067.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164068.png" />) is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164069.png" />. The prolongation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164071.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164072.png" /> is defined as the system of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164073.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164074.png" /> generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164075.png" /> (strictly speaking, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164076.png" />) and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164078.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164079.png" /> on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164080.png" /> jet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164081.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164082.png" /> is defined by
| + | $$ |
| + | \left . |
| + | \frac{\partial ^ \alpha s _ {1} }{\partial x ^ \alpha } |
| + | \ |
| + | \right | _ {x= x _ {0} } = \left . |
| + | \frac{\partial ^ \alpha s _ {2} }{\partial x ^ \alpha } |
| + | \ |
| + | \right | _ {x= x _ {0} } ,\ 0 \leq | \alpha | \leq r , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164083.png" /></td> </tr></table>
| + | where $ \alpha = ( a _ {1} \dots a _ {n} ) $, |
| + | $ a _ {i} \in \{ 0, 1,\dots \} $, |
| + | $ | \alpha | = a _ {1} + \dots + a _ {n} $. |
| + | Let $ J ^ {r} ( \pi ) $ |
| + | be the set of all $ r $-jets. In local coordinates $ \pi $ |
| + | looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $, |
| + | $ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $. |
| + | It readily follows that $ J ^ {r} ( \pi ) $ |
| + | is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $, |
| + | [[#References|[a2]]], [[#References|[a5]]]. The differentiable bundle $ J ^ {r} ( \pi ) $ |
| + | is called the $ r $-th jet bundle of the fibred manifold $ \pi : M \rightarrow N $. |
| + | For the case of a vector bundle $ E \rightarrow N $ |
| + | see also [[Linear differential operator|Linear differential operator]]; for the case $ \pi : N \times N ^ \prime \rightarrow N $ |
| + | one finds $ J ^ {r} ( N, N ^ \prime ) $, |
| + | the jet bundle of mappings $ N \rightarrow N ^ \prime $. |
| + | There are natural fibre bundle mappings $ \pi _ {r,k } : J ^ {r} ( \pi ) \rightarrow J ^ {k} ( \pi ) $ |
| + | for $ r \geq k \geq 0 $, |
| + | defined in local coordinates by forgetting about the $ p ^ \alpha $ |
| + | with $ | \alpha | > k $. |
| + | It is convenient to set $ p ^ {0,k } = u ^ {k} $ |
| + | and $ J ^ {-1} ( \pi ) = N $, |
| + | and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $ |
| + | is defined in the same way (forget about all $ p ^ \alpha $ |
| + | and the $ u ^ {j} $). |
| | | |
− | In local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164084.png" /> the formal derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164085.png" /> is given by
| + | Let $ {\mathcal O} ( J ^ {r} ( \pi )) $ |
| + | be the [[Sheaf|sheaf]] of (germs of) differentiable functions on $ J ^ {r} ( \pi ) $. |
| + | It is a sheaf of rings. A subsheaf of ideals $ \mathfrak a $ |
| + | of $ {\mathcal O}( J ^ {r} ( \pi ) ) $ |
| + | is a system of partial differential equations of order $ r $ |
| + | on $ N $. |
| + | A solution of the system $ \mathfrak a $ |
| + | is a section $ s : N \rightarrow M $ |
| + | such that $ f \circ J ^ {r} ( s)= 0 $ |
| + | for all $ f \in \mathfrak a $. |
| + | The set of integral points of $ \mathfrak a $ (i.e. the zeros of $ \mathfrak a $ |
| + | on $ J ^ {r} ( \pi ) $) |
| + | is denoted by $ J ( \mathfrak a ) $. |
| + | The prolongation $ p ( \mathfrak a ) $ |
| + | of $ \mathfrak a $ |
| + | is defined as the system of order $ r+ 1 $ |
| + | on $ N $ |
| + | generated by the $ f \in \mathfrak a $( |
| + | strictly speaking, the $ f \circ \pi _ {r,r- 1 } $) |
| + | and the $ \partial ^ {k} f $, |
| + | $ f \in \mathfrak a $, |
| + | where $ \partial ^ {k} f $ |
| + | on an $ r+ 1 $ |
| + | jet $ j _ {x} ^ {r+1} ( s) $ |
| + | at $ x \in N $ |
| + | is defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164086.png" /></td> </tr></table>
| + | $$ |
| + | ( \partial ^ {k} f )( j _ {x} ^ {r+1} ( s)) = |
| + | \frac \partial {\partial x ^ {k} } |
| + | f( j _ {x} ^ {r} ( s)). |
| + | $$ |
| | | |
− | where the sum on the right is over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164087.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164088.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164089.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164091.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164092.png" />).
| + | In local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } ) $ |
| + | the formal derivative $ \partial ^ {k} f $ |
| + | is given by |
| | | |
− | The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164093.png" /> is said to be involutive at an integral point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164095.png" />, [[#References|[a1]]], if the following two conditions are satisfied: i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164096.png" /> is a regular local equation for the zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164098.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p07164099.png" /> (i.e. there are local sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640100.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640101.png" /> on an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640102.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640103.png" /> such that the integral points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640104.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640105.png" /> are precisely the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640106.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640108.png" /> are linearly independent at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640109.png" />); and ii) there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640110.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640111.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640112.png" /> is a fibred manifold over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640113.png" /> (with projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640114.png" />). For a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640115.png" /> generated by linearly independent Pfaffian forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640116.png" /> (i.e. a Pfaffian system, cf. [[Pfaffian problem|Pfaffian problem]]) this is equivalent to the involutiveness defined in [[Involutive distribution|Involutive distribution]], [[#References|[a2]]], [[#References|[a3]]]. As in that case of involutiveness one has to deal with solutions.
| + | $$ |
| + | \partial ^ {k} f ( x , u , p) = |
| + | \frac{\partial f }{\partial x ^ {k} } |
| + | + \sum p ^ {\alpha ( i),j } |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640117.png" /> be a system defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640118.png" />, and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640119.png" /> is involutive at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640120.png" />. Then there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640121.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640122.png" /> satisfying the following. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640123.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640124.png" /> is in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640125.png" />, then there is a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640126.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640127.png" /> defined on a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640128.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640129.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640130.png" />.
| + | \frac{\partial f }{\partial p ^ {\alpha ,j } } |
| + | , |
| + | $$ |
| | | |
− | The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640131.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640132.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640133.png" />) projecting onto each other (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640134.png" />) such that: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640135.png" /> is a regular local equation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640136.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640137.png" />; and b) there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640138.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640139.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640140.png" /> such that its projection under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640141.png" /> contains a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640142.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640143.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640144.png" /> is a fibred manifold. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640145.png" /> is involutive at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640146.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071640/p071640147.png" /> large enough. This prolongation theorem has important applications in the Lie–Cartan theory of infinite-dimensional Lie groups. The theorem has been extended to cover more general cases [[#References|[a4]]]. | + | where the sum on the right is over $ j= 1 \dots m $ |
| + | and all $ \alpha = ( a _ {1} \dots a _ {n} ) $ |
| + | with $ | \alpha | \leq r $, |
| + | and $ \alpha ( i) = ( a _ {1} \dots a _ {i-1} , a _ {i} + 1 , a _ {i+1} \dots a _ {n} ) $, |
| + | $ a _ {i} \in \{ 0, 1, \dots \} $ (and $ p ^ {0,j } = u ^ {j} $). |
| + | |
| + | The system $ \mathfrak a $ |
| + | is said to be involutive at an integral point $ z \in J ^ {r} ( \pi ) $, |
| + | [[#References|[a1]]], if the following two conditions are satisfied: i) $ \mathfrak a $ |
| + | is a regular local equation for the zeros of $ \mathfrak a $ |
| + | at $ z $ |
| + | (i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $ |
| + | of $ \mathfrak a $ |
| + | on an open neighbourhood $ U $ |
| + | of $ z $ |
| + | such that the integral points of $ \mathfrak a $ |
| + | in $ U $ |
| + | are precisely the points $ z ^ \prime $ |
| + | for which $ s _ {j} ( z ^ \prime )= 0 $ |
| + | and $ ds _ {1} \dots ds _ {t} $ |
| + | are linearly independent at $ z $); |
| + | and ii) there is a neighbourhood $ U $ |
| + | of $ z $ |
| + | such that $ \pi _ {r+ 1,r } ^ {-1} ( U) \cap J( p( \mathfrak a )) $ |
| + | is a fibred manifold over $ U \cap J ( \mathfrak a ) $( |
| + | with projection $ \pi _ {r+ 1,r } $). |
| + | For a system $ \mathfrak a $ |
| + | generated by linearly independent Pfaffian forms $ \theta ^ {1} \dots \theta ^ {k} $( |
| + | i.e. a Pfaffian system, cf. [[Pfaffian problem|Pfaffian problem]]) this is equivalent to the involutiveness defined in [[Involutive distribution|Involutive distribution]], [[#References|[a2]]], [[#References|[a3]]]. As in that case of involutiveness one has to deal with solutions. |
| + | |
| + | Let $ \mathfrak a $ |
| + | be a system defined on $ J ^ {r} ( \pi ) $, |
| + | and suppose that $ \mathfrak a $ |
| + | is involutive at $ z \in J ( \mathfrak a ) $. |
| + | Then there is a neighbourhood $ U $ |
| + | of $ z $ |
| + | satisfying the following. If $ \widetilde{z} \in J ( p ^ {t} ( \mathfrak a )) $ |
| + | and $ \pi _ {r+ t,r } ( \widetilde{z} ) $ |
| + | is in $ U $, |
| + | then there is a solution $ f $ |
| + | of $ \mathfrak a $ |
| + | defined on a neighbourhood of $ x= \pi _ {r+ t,- 1 } ( \widetilde{z} ) $ |
| + | such that $ J ^ {r+ t } ( f ) = \widetilde{z} $ |
| + | at $ x $. |
| + | |
| + | The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $ |
| + | of $ p ^ {t} ( \mathfrak a ) $ ($ t= 0, 1,\dots $) |
| + | projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-1} $) |
| + | such that: a) $ p ^ {t} ( \mathfrak a ) $ |
| + | is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $ |
| + | at $ z ^ {t} $; |
| + | and b) there is a neighbourhood $ U ^ {t} $ |
| + | of $ z ^ {t} $ |
| + | in $ J( p ^ {t} ( \mathfrak a ) ) $ |
| + | such that its projection under $ \pi _ {r+ t,r+ t- 1 } $ |
| + | contains a neighbourhood of $ z ^ {t-1} $ |
| + | in $ J ( p ^ {t-1} ( \mathfrak a ) ) $ |
| + | and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $ |
| + | is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $ |
| + | is involutive at $ z ^ {t} $ |
| + | for $ t $ |
| + | large enough. This prolongation theorem has important applications in the Lie–Cartan theory of infinite-dimensional Lie groups. The theorem has been extended to cover more general cases [[#References|[a4]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Kuranishi, "On E. Cartan's prolongation theorem of exterior differential systems" ''Amer. J. Math.'' , '''79''' (1957) pp. 1–47 {{MR|0081957}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967) {{MR|}} {{ZBL|0163.12001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114 {{MR|0217822}} {{ZBL|0277.58008}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Matsuda, "Cartan–Kuranishi's prolongation of differential systems combined with that of Lagrange–Jacobi" ''Publ. Math. RIMS'' , '''3''' (1967) pp. 69–84 {{MR|222438}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. Sect. 2.4 {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Kuranishi, "On E. Cartan's prolongation theorem of exterior differential systems" ''Amer. J. Math.'' , '''79''' (1957) pp. 1–47 {{MR|0081957}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967) {{MR|}} {{ZBL|0163.12001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114 {{MR|0217822}} {{ZBL|0277.58008}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Matsuda, "Cartan–Kuranishi's prolongation of differential systems combined with that of Lagrange–Jacobi" ''Publ. Math. RIMS'' , '''3''' (1967) pp. 69–84 {{MR|222438}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. Sect. 2.4 {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR></table> |
The basic idea is that a partial differential equation is given by a set of functions in a jet bundle, which is natural because after all a (partial) differential equation is a relation between a function, its dependent variables and its derivatives up to a certain order. In the sequel, all manifolds and mappings are either all $ C ^ \infty $
or all real-analytic.
A fibred manifold is a triple $ ( M, N, \pi ) $
consisting of two manifolds $ M $,
$ N $
and a differentiable mapping $ \pi : M \rightarrow N $
such that $ d \pi ( m) : T _ {m} M \rightarrow T _ {\pi ( m) } N $
is surjective for all $ m \in M $.
An example is a vector bundle $ ( E, N, \pi ) $
over $ N $.
This means that locally around each $ m \in M $
the situation looks like the canonical projection $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $(
$ \mathop{\rm dim} M= m+ n $,
$ \mathop{\rm dim} N= n $).
A cross section over an open set $ U \subset N $
is a differentiable mapping $ s: U \rightarrow \pi ^ {-1} ( U) \subset M $
such that $ \pi \circ s = \mathop{\rm id} $.
An $ r $-jet of cross sections at $ x \in N $
is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $,
$ i= 1, 2 $,
are $ r $-jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $
if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $
and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $
and $ x _ {0} $
one has
$$
\left .
\frac{\partial ^ \alpha s _ {1} }{\partial x ^ \alpha }
\
\right | _ {x= x _ {0} } = \left .
\frac{\partial ^ \alpha s _ {2} }{\partial x ^ \alpha }
\
\right | _ {x= x _ {0} } ,\ 0 \leq | \alpha | \leq r ,
$$
where $ \alpha = ( a _ {1} \dots a _ {n} ) $,
$ a _ {i} \in \{ 0, 1,\dots \} $,
$ | \alpha | = a _ {1} + \dots + a _ {n} $.
Let $ J ^ {r} ( \pi ) $
be the set of all $ r $-jets. In local coordinates $ \pi $
looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $,
$ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $.
It readily follows that $ J ^ {r} ( \pi ) $
is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $,
[a2], [a5]. The differentiable bundle $ J ^ {r} ( \pi ) $
is called the $ r $-th jet bundle of the fibred manifold $ \pi : M \rightarrow N $.
For the case of a vector bundle $ E \rightarrow N $
see also Linear differential operator; for the case $ \pi : N \times N ^ \prime \rightarrow N $
one finds $ J ^ {r} ( N, N ^ \prime ) $,
the jet bundle of mappings $ N \rightarrow N ^ \prime $.
There are natural fibre bundle mappings $ \pi _ {r,k } : J ^ {r} ( \pi ) \rightarrow J ^ {k} ( \pi ) $
for $ r \geq k \geq 0 $,
defined in local coordinates by forgetting about the $ p ^ \alpha $
with $ | \alpha | > k $.
It is convenient to set $ p ^ {0,k } = u ^ {k} $
and $ J ^ {-1} ( \pi ) = N $,
and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $
is defined in the same way (forget about all $ p ^ \alpha $
and the $ u ^ {j} $).
Let $ {\mathcal O} ( J ^ {r} ( \pi )) $
be the sheaf of (germs of) differentiable functions on $ J ^ {r} ( \pi ) $.
It is a sheaf of rings. A subsheaf of ideals $ \mathfrak a $
of $ {\mathcal O}( J ^ {r} ( \pi ) ) $
is a system of partial differential equations of order $ r $
on $ N $.
A solution of the system $ \mathfrak a $
is a section $ s : N \rightarrow M $
such that $ f \circ J ^ {r} ( s)= 0 $
for all $ f \in \mathfrak a $.
The set of integral points of $ \mathfrak a $ (i.e. the zeros of $ \mathfrak a $
on $ J ^ {r} ( \pi ) $)
is denoted by $ J ( \mathfrak a ) $.
The prolongation $ p ( \mathfrak a ) $
of $ \mathfrak a $
is defined as the system of order $ r+ 1 $
on $ N $
generated by the $ f \in \mathfrak a $(
strictly speaking, the $ f \circ \pi _ {r,r- 1 } $)
and the $ \partial ^ {k} f $,
$ f \in \mathfrak a $,
where $ \partial ^ {k} f $
on an $ r+ 1 $
jet $ j _ {x} ^ {r+1} ( s) $
at $ x \in N $
is defined by
$$
( \partial ^ {k} f )( j _ {x} ^ {r+1} ( s)) =
\frac \partial {\partial x ^ {k} }
f( j _ {x} ^ {r} ( s)).
$$
In local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } ) $
the formal derivative $ \partial ^ {k} f $
is given by
$$
\partial ^ {k} f ( x , u , p) =
\frac{\partial f }{\partial x ^ {k} }
+ \sum p ^ {\alpha ( i),j }
\frac{\partial f }{\partial p ^ {\alpha ,j } }
,
$$
where the sum on the right is over $ j= 1 \dots m $
and all $ \alpha = ( a _ {1} \dots a _ {n} ) $
with $ | \alpha | \leq r $,
and $ \alpha ( i) = ( a _ {1} \dots a _ {i-1} , a _ {i} + 1 , a _ {i+1} \dots a _ {n} ) $,
$ a _ {i} \in \{ 0, 1, \dots \} $ (and $ p ^ {0,j } = u ^ {j} $).
The system $ \mathfrak a $
is said to be involutive at an integral point $ z \in J ^ {r} ( \pi ) $,
[a1], if the following two conditions are satisfied: i) $ \mathfrak a $
is a regular local equation for the zeros of $ \mathfrak a $
at $ z $
(i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $
of $ \mathfrak a $
on an open neighbourhood $ U $
of $ z $
such that the integral points of $ \mathfrak a $
in $ U $
are precisely the points $ z ^ \prime $
for which $ s _ {j} ( z ^ \prime )= 0 $
and $ ds _ {1} \dots ds _ {t} $
are linearly independent at $ z $);
and ii) there is a neighbourhood $ U $
of $ z $
such that $ \pi _ {r+ 1,r } ^ {-1} ( U) \cap J( p( \mathfrak a )) $
is a fibred manifold over $ U \cap J ( \mathfrak a ) $(
with projection $ \pi _ {r+ 1,r } $).
For a system $ \mathfrak a $
generated by linearly independent Pfaffian forms $ \theta ^ {1} \dots \theta ^ {k} $(
i.e. a Pfaffian system, cf. Pfaffian problem) this is equivalent to the involutiveness defined in Involutive distribution, [a2], [a3]. As in that case of involutiveness one has to deal with solutions.
Let $ \mathfrak a $
be a system defined on $ J ^ {r} ( \pi ) $,
and suppose that $ \mathfrak a $
is involutive at $ z \in J ( \mathfrak a ) $.
Then there is a neighbourhood $ U $
of $ z $
satisfying the following. If $ \widetilde{z} \in J ( p ^ {t} ( \mathfrak a )) $
and $ \pi _ {r+ t,r } ( \widetilde{z} ) $
is in $ U $,
then there is a solution $ f $
of $ \mathfrak a $
defined on a neighbourhood of $ x= \pi _ {r+ t,- 1 } ( \widetilde{z} ) $
such that $ J ^ {r+ t } ( f ) = \widetilde{z} $
at $ x $.
The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $
of $ p ^ {t} ( \mathfrak a ) $ ($ t= 0, 1,\dots $)
projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-1} $)
such that: a) $ p ^ {t} ( \mathfrak a ) $
is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $
at $ z ^ {t} $;
and b) there is a neighbourhood $ U ^ {t} $
of $ z ^ {t} $
in $ J( p ^ {t} ( \mathfrak a ) ) $
such that its projection under $ \pi _ {r+ t,r+ t- 1 } $
contains a neighbourhood of $ z ^ {t-1} $
in $ J ( p ^ {t-1} ( \mathfrak a ) ) $
and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $
is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $
is involutive at $ z ^ {t} $
for $ t $
large enough. This prolongation theorem has important applications in the Lie–Cartan theory of infinite-dimensional Lie groups. The theorem has been extended to cover more general cases [a4].
References
[a1] | M. Kuranishi, "On E. Cartan's prolongation theorem of exterior differential systems" Amer. J. Math. , 79 (1957) pp. 1–47 MR0081957 |
[a2] | M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967) Zbl 0163.12001 |
[a3] | I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 MR0217822 Zbl 0277.58008 |
[a4] | M. Matsuda, "Cartan–Kuranishi's prolongation of differential systems combined with that of Lagrange–Jacobi" Publ. Math. RIMS , 3 (1967) pp. 69–84 MR222438 |
[a5] | M.W. Hirsch, "Differential topology" , Springer (1976) pp. Sect. 2.4 MR0448362 Zbl 0356.57001 |