Difference between revisions of "Three-series theorem"
(→References: Feller: internal link) |
m (fix tex) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | t0927401.png | ||
| + | $#A+1 = 22 n = 0 | ||
| + | $#C+1 = 22 : ~/encyclopedia/old_files/data/T092/T.0902740 Three\AAhseries theorem, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Kolmogorov three-series theorem, three-series criterion'' | ''Kolmogorov three-series theorem, three-series criterion'' | ||
| − | For each | + | For each $ s> 0 $, |
| + | let $ \tau _ {s} $ | ||
| + | be the truncation function $ \tau _ {s} ( x)= s $ | ||
| + | for $ x \geq s $, | ||
| + | $ \tau _ {s} ( x) = x $ | ||
| + | for $ | x | \leq s $, | ||
| + | $ \tau _ {s} ( x)= - s $ | ||
| + | for $ x \leq - s $. | ||
| − | Let | + | Let $ X _ {1} , X _ {2} \dots $ |
| + | be independent random variables with distributions $ F _ {1} , F _ {2} ,\dots $. | ||
| + | Consider the sums $ S _ {n} = X _ {1} + \dots + X _ {n} $, | ||
| + | with distributions $ F _ {1} \star \dots \star F _ {n} $. | ||
| + | In order that these convolutions $ F _ {1} \star \dots \star F _ {n} $ | ||
| + | tend to a proper limit distribution $ F $ | ||
| + | as $ n \rightarrow \infty $, | ||
| + | it is necessary and sufficient that for all $ s> 0 $, | ||
| − | + | $$ \tag{a1 } | |
| + | \sum _ { k } {\mathsf P} \{ | X _ {k} | > s \} < \infty , | ||
| + | $$ | ||
| − | + | $$ \tag{a2 } | |
| + | \sum \mathop{\rm Var} ( X _ {k} ^ { \prime } ) < \infty , | ||
| + | $$ | ||
| − | + | $$ \tag{a3 } | |
| + | \sum _ { k= 1} ^ { n } {\mathsf E} ( X _ {k} ^ { \prime } ) \rightarrow m , | ||
| + | $$ | ||
| − | where | + | where $ X _ {k} ^ { \prime } = \tau _ {s} ( X _ {k} ) $. |
| − | This can be reformulated as the Kolmogorov three-series theorem: The series | + | This can be reformulated as the Kolmogorov three-series theorem: The series $ \sum X _ {k} $ |
| + | converges with probability $ 1 $ | ||
| + | if (a1)–(a3) hold, and it converges with probability zero otherwise. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Loève, "Probability theory", Princeton Univ. Press (1963) pp. Sect. 16.3</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''', Wiley (1971) pp. Sect. IX.9</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Loève, "Probability theory", Princeton Univ. Press (1963) pp. Sect. 16.3</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''', Wiley (1971) pp. Sect. IX.9</TD></TR></table> | ||
Latest revision as of 16:15, 13 January 2021
Kolmogorov three-series theorem, three-series criterion
For each $ s> 0 $, let $ \tau _ {s} $ be the truncation function $ \tau _ {s} ( x)= s $ for $ x \geq s $, $ \tau _ {s} ( x) = x $ for $ | x | \leq s $, $ \tau _ {s} ( x)= - s $ for $ x \leq - s $.
Let $ X _ {1} , X _ {2} \dots $ be independent random variables with distributions $ F _ {1} , F _ {2} ,\dots $. Consider the sums $ S _ {n} = X _ {1} + \dots + X _ {n} $, with distributions $ F _ {1} \star \dots \star F _ {n} $. In order that these convolutions $ F _ {1} \star \dots \star F _ {n} $ tend to a proper limit distribution $ F $ as $ n \rightarrow \infty $, it is necessary and sufficient that for all $ s> 0 $,
$$ \tag{a1 } \sum _ { k } {\mathsf P} \{ | X _ {k} | > s \} < \infty , $$
$$ \tag{a2 } \sum \mathop{\rm Var} ( X _ {k} ^ { \prime } ) < \infty , $$
$$ \tag{a3 } \sum _ { k= 1} ^ { n } {\mathsf E} ( X _ {k} ^ { \prime } ) \rightarrow m , $$
where $ X _ {k} ^ { \prime } = \tau _ {s} ( X _ {k} ) $.
This can be reformulated as the Kolmogorov three-series theorem: The series $ \sum X _ {k} $ converges with probability $ 1 $ if (a1)–(a3) hold, and it converges with probability zero otherwise.
References
| [a1] | M. Loève, "Probability theory", Princeton Univ. Press (1963) pp. Sect. 16.3 |
| [a2] | W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971) pp. Sect. IX.9 |
Three-series theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Three-series_theorem&oldid=25947