Difference between revisions of "Gauss kernel"
(→References: Feller: internal link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g1100702.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/G110/G.1100070 Gauss kernel | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The $ n $- | |
+ | dimensional Gauss (or Weierstrass) kernel | ||
− | + | $$ | |
+ | G ( x,y,t;D ) = ( 4 \pi Dt ) ^ {- n/2 } { \mathop{\rm exp} } \left ( - { | ||
+ | \frac{1}{4Dt } | ||
+ | } \left | {x - y } \right | ^ {2} \right ) , | ||
+ | $$ | ||
− | + | with $ D $ | |
+ | a positive constant, $ t > 0 $, | ||
+ | $ x,y \in \mathbf R ^ {n} $, | ||
+ | is the [[Fundamental solution|fundamental solution]] of the $ n $- | ||
+ | dimensional [[Heat equation|heat equation]] $ u _ {t} = D \Delta u $. | ||
+ | Moreover, this kernel is an approximate identity in that the Gauss–Weierstrass singular integral at the function $ f $, | ||
+ | |||
+ | $$ | ||
+ | u ( x,t;D ) = \int\limits _ {\mathbf R ^ {n} } {G ( x,y,t;D ) f ( y ) } {dy } , | ||
+ | $$ | ||
+ | |||
+ | satisfies $ {\lim\limits } _ {t \rightarrow 0 ^ {+} } u ( x,t;D ) = f ( x ) $ | ||
+ | almost everywhere, for example, whenever $ \int _ {\mathbf R ^ {n} } {e ^ {- A | y | ^ {2} } | {f ( y ) } | } {dy } < \infty $ | ||
+ | for some $ A > 0 $; | ||
+ | see [[#References|[a4]]]. Thus $ u ( x,t;D ) $ | ||
+ | is a solution of the heat equation for $ 0 < t < {1 / {( 4AD ) } } $, | ||
+ | $ x \in \mathbf R ^ {n} $ | ||
+ | having the initial "temperature" $ f $. | ||
In the theory of Markov processes (cf. [[Markov process|Markov process]]) the Gauss kernel gives the transition probability density of the Wiener–Lévy process (or of [[Brownian motion|Brownian motion]]). The semi-group property of the Gauss kernel | In the theory of Markov processes (cf. [[Markov process|Markov process]]) the Gauss kernel gives the transition probability density of the Wiener–Lévy process (or of [[Brownian motion|Brownian motion]]). The semi-group property of the Gauss kernel | ||
− | + | $$ | |
+ | G ( x,z,t _ {1} + t _ {2} ;D ) = \int\limits _ {\mathbf R ^ {n} } {G ( x,y,t _ {1} ;D ) G ( y,z,t _ {2} ;D ) } {dy } , | ||
+ | $$ | ||
− | + | $$ | |
+ | t _ {1} ,t _ {2} > 0, \quad x,z \in \mathbf R ^ {n} , | ||
+ | $$ | ||
is essential here. | is essential here. |
Latest revision as of 19:41, 5 June 2020
The $ n $-
dimensional Gauss (or Weierstrass) kernel
$$ G ( x,y,t;D ) = ( 4 \pi Dt ) ^ {- n/2 } { \mathop{\rm exp} } \left ( - { \frac{1}{4Dt } } \left | {x - y } \right | ^ {2} \right ) , $$
with $ D $ a positive constant, $ t > 0 $, $ x,y \in \mathbf R ^ {n} $, is the fundamental solution of the $ n $- dimensional heat equation $ u _ {t} = D \Delta u $. Moreover, this kernel is an approximate identity in that the Gauss–Weierstrass singular integral at the function $ f $,
$$ u ( x,t;D ) = \int\limits _ {\mathbf R ^ {n} } {G ( x,y,t;D ) f ( y ) } {dy } , $$
satisfies $ {\lim\limits } _ {t \rightarrow 0 ^ {+} } u ( x,t;D ) = f ( x ) $ almost everywhere, for example, whenever $ \int _ {\mathbf R ^ {n} } {e ^ {- A | y | ^ {2} } | {f ( y ) } | } {dy } < \infty $ for some $ A > 0 $; see [a4]. Thus $ u ( x,t;D ) $ is a solution of the heat equation for $ 0 < t < {1 / {( 4AD ) } } $, $ x \in \mathbf R ^ {n} $ having the initial "temperature" $ f $.
In the theory of Markov processes (cf. Markov process) the Gauss kernel gives the transition probability density of the Wiener–Lévy process (or of Brownian motion). The semi-group property of the Gauss kernel
$$ G ( x,z,t _ {1} + t _ {2} ;D ) = \int\limits _ {\mathbf R ^ {n} } {G ( x,y,t _ {1} ;D ) G ( y,z,t _ {2} ;D ) } {dy } , $$
$$ t _ {1} ,t _ {2} > 0, \quad x,z \in \mathbf R ^ {n} , $$
is essential here.
References
[a1] | P. Butzer, R. Nessel, "Fourier analysis and approximation", I, Birkhäuser (1971) |
[a2] | R. Courant, D. Hilbert, "Methods of mathematical physics", II, Wiley (1962) |
[a3] | W. Feller, "An introduction to probability theory and its applications", 2, Springer (1976) (Edition: Second) |
[a4] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals", Clarendon Press (1937) |
[a5] | K. Weierstrass, "Ueber die analytische Darstellbarkeit sogenannter willkurlichen Functionen reeler Argumente" Berliner Sitzungsberichte (1985) pp. 633–639; 789–805 |
Gauss kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_kernel&oldid=25928