# Thermal-conductance equation

(Redirected from Heat equation)

heat equation

The homogeneous partial differential equation

$$\frac{\partial u}{\partial t}-a^2\sum_{k=1}^n\frac{\partial^2u}{\partial x_k^2}=0.$$

This equation is the simplest example of a parabolic partial differential equation. For $n=3$ it describes the process of heat diffusion in a solid body. The first boundary value problem (in a cylindrical domain) and the Cauchy–Dirichlet problem (in a half-space) are the fundamental well-posed problems for the thermal-conductance equation. A solution to the characteristic (Cauchy) problem can be given in explicit form:

$$u(x,t)=\frac{1}{(2a\sqrt{\pi t})^n}\int\limits_{\mathbf R^n}\exp\left(-\frac{|x-\xi|^2}{4a^2t}\right)\phi(\xi)d\xi,\quad t>0,$$

where $\phi(\xi)$ is a fixed continuous uniformly bounded function on $\mathbf R^n$.

How to Cite This Entry:
Heat equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heat_equation&oldid=43345