Difference between revisions of "Steenrod problem"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0875401.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/S087/S.0807540 Steenrod problem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | The problem of the realization of cycles (homology classes) by singular manifolds; formulated by N. Steenrod, cf. [[#References|[1]]]. Let $ M $ | ||
+ | be a closed oriented manifold (topological, piecewise-linear, smooth, etc.) and let $ [ M] \in H _ {n} ( M) $ | ||
+ | be its orientation (here $ H _ {n} ( M) $ | ||
+ | is the $ n $- | ||
+ | dimensional [[Homology group|homology group]] of $ M $). | ||
+ | Any continuous mapping $ f: M\rightarrow X $ | ||
+ | defines an element $ f _ \star [ M] \in H _ {n} ( X) $. | ||
+ | The Steenrod problem consists of describing those homology classes of $ X $, | ||
+ | called realizable, which are obtained in this way, i.e. which take the form $ f _ \star [ M] $ | ||
+ | for a certain $ M $ | ||
+ | from the given class. All elements of the groups $ H _ {i} ( X) $, | ||
+ | $ i \leq 6 $, | ||
+ | are realizable by a smooth manifold. Any element of the group $ H _ {n} ( X) $, | ||
+ | $ n \neq 3 $, | ||
+ | is realizable by a mapping of a [[Poincaré complex|Poincaré complex]] $ P $. | ||
+ | Moreover, any cycle can be realized by a [[Pseudo-manifold|pseudo-manifold]]. Non-orientable manifolds can also be considered, and every homology class modulo $ 2 $( | ||
+ | i.e. element of $ H _ {n} ( X , \mathbf Z / 2 ) $) | ||
+ | can be realized by a non-oriented smooth singular manifold $ f : M ^ {n} \rightarrow X $. | ||
+ | |||
+ | Thus, for smooth $ M $ | ||
+ | the Steenrod problem consists of describing the form of the homomorphism $ \Omega _ {n} ( X) \rightarrow H _ {n} ( X) $, | ||
+ | where $ \Omega _ {n} ( X) $ | ||
+ | is the oriented [[Bordism|bordism]] group of the space. The connection between the bordisms $ \Omega _ \star $ | ||
+ | and the Thom spaces (cf. [[Thom space|Thom space]]) $ \mathop{\rm MSO} ( k) $, | ||
+ | discovered by R. Thom [[#References|[2]]], clarified the Steenrod problem by reducing it to the study of the mappings $ H ^ \star ( \mathop{\rm MSO} ( k)) \rightarrow H ^ \star ( X) $. | ||
+ | A non-realizable class $ x \in H _ {7} ( X) $ | ||
+ | has been exhibited, where $ X $ | ||
+ | is the [[Eilenberg–MacLane space|Eilenberg–MacLane space]] $ K( \mathbf Z _ {3} \oplus \mathbf Z _ {3} , 1) $. | ||
+ | For any class $ x $, | ||
+ | some multiple $ nx $ | ||
+ | is realizable (by a smooth manifold); moreover, $ n $ | ||
+ | can be chosen odd. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Eilenberg, "On the problems of topology" ''Ann. of Math.'' , '''50''' (1949) pp. 247–260 {{MR|0030189}} {{ZBL|0034.25304}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Thom, "Quelques propriétés globales des variétés differentiables" ''Comm. Math. Helv.'' , '''28''' (1954) pp. 17–86 {{MR|0061823}} {{ZBL|0057.15502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) {{MR|0248858}} {{ZBL|0181.26604}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Yu.B. Rudyak, "Realization of homology classes of PL-manifolds with singularities" ''Math. Notes'' , '''41''' : 5 (1987) pp. 417–421 ''Mat. Zametki'' , '''41''' : 5 (1987) pp. 741–749 {{MR|898135}} {{ZBL|0632.57020}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Eilenberg, "On the problems of topology" ''Ann. of Math.'' , '''50''' (1949) pp. 247–260 {{MR|0030189}} {{ZBL|0034.25304}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Thom, "Quelques propriétés globales des variétés differentiables" ''Comm. Math. Helv.'' , '''28''' (1954) pp. 17–86 {{MR|0061823}} {{ZBL|0057.15502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) {{MR|0248858}} {{ZBL|0181.26604}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Yu.B. Rudyak, "Realization of homology classes of PL-manifolds with singularities" ''Math. Notes'' , '''41''' : 5 (1987) pp. 417–421 ''Mat. Zametki'' , '''41''' : 5 (1987) pp. 741–749 {{MR|898135}} {{ZBL|0632.57020}} </TD></TR></table> |
Latest revision as of 08:23, 6 June 2020
The problem of the realization of cycles (homology classes) by singular manifolds; formulated by N. Steenrod, cf. [1]. Let $ M $
be a closed oriented manifold (topological, piecewise-linear, smooth, etc.) and let $ [ M] \in H _ {n} ( M) $
be its orientation (here $ H _ {n} ( M) $
is the $ n $-
dimensional homology group of $ M $).
Any continuous mapping $ f: M\rightarrow X $
defines an element $ f _ \star [ M] \in H _ {n} ( X) $.
The Steenrod problem consists of describing those homology classes of $ X $,
called realizable, which are obtained in this way, i.e. which take the form $ f _ \star [ M] $
for a certain $ M $
from the given class. All elements of the groups $ H _ {i} ( X) $,
$ i \leq 6 $,
are realizable by a smooth manifold. Any element of the group $ H _ {n} ( X) $,
$ n \neq 3 $,
is realizable by a mapping of a Poincaré complex $ P $.
Moreover, any cycle can be realized by a pseudo-manifold. Non-orientable manifolds can also be considered, and every homology class modulo $ 2 $(
i.e. element of $ H _ {n} ( X , \mathbf Z / 2 ) $)
can be realized by a non-oriented smooth singular manifold $ f : M ^ {n} \rightarrow X $.
Thus, for smooth $ M $ the Steenrod problem consists of describing the form of the homomorphism $ \Omega _ {n} ( X) \rightarrow H _ {n} ( X) $, where $ \Omega _ {n} ( X) $ is the oriented bordism group of the space. The connection between the bordisms $ \Omega _ \star $ and the Thom spaces (cf. Thom space) $ \mathop{\rm MSO} ( k) $, discovered by R. Thom [2], clarified the Steenrod problem by reducing it to the study of the mappings $ H ^ \star ( \mathop{\rm MSO} ( k)) \rightarrow H ^ \star ( X) $. A non-realizable class $ x \in H _ {7} ( X) $ has been exhibited, where $ X $ is the Eilenberg–MacLane space $ K( \mathbf Z _ {3} \oplus \mathbf Z _ {3} , 1) $. For any class $ x $, some multiple $ nx $ is realizable (by a smooth manifold); moreover, $ n $ can be chosen odd.
References
[1] | S. Eilenberg, "On the problems of topology" Ann. of Math. , 50 (1949) pp. 247–260 MR0030189 Zbl 0034.25304 |
[2] | R. Thom, "Quelques propriétés globales des variétés differentiables" Comm. Math. Helv. , 28 (1954) pp. 17–86 MR0061823 Zbl 0057.15502 |
[3] | P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) MR0176478 Zbl 0125.40103 |
[4] | R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) MR0248858 Zbl 0181.26604 |
[5] | Yu.B. Rudyak, "Realization of homology classes of PL-manifolds with singularities" Math. Notes , 41 : 5 (1987) pp. 417–421 Mat. Zametki , 41 : 5 (1987) pp. 741–749 MR898135 Zbl 0632.57020 |
Steenrod problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steenrod_problem&oldid=24570