Difference between revisions of "Probability measure"
(MSC|60-01) |
m (fix tex) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0749301.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/P074/P.0704930 Probability measure, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''probability distribution, probability'' | ''probability distribution, probability'' | ||
{{MSC|60-01}} | {{MSC|60-01}} | ||
− | A real non-negative function | + | A real non-negative function $ {\mathsf P} $ |
+ | on a class $ {\mathcal A} $ | ||
+ | of subsets (events) of a non-empty set $ \Omega $ | ||
+ | (the space of elementary events) forming a $ \sigma $- | ||
+ | field (i.e. a set closed with respect to countable set-theoretic operations) such that | ||
− | + | $$ | |
+ | {\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ | ||
+ | {\mathsf P} \left ( \cup _ { i=1} ^ \infty A _ {i} \right ) = \ | ||
+ | \sum _ { i=1 } ^ \infty {\mathsf P} ( A _ {i} ) | ||
+ | $$ | ||
− | if | + | if $ A _ {i} \cap A _ {j} = \emptyset $ |
+ | for $ i \neq j $( | ||
+ | $ \sigma $- | ||
+ | additivity). | ||
===Examples of probability measures.=== | ===Examples of probability measures.=== | ||
+ | 1) $ \Omega = \{ 1, 2 \} $; | ||
+ | $ {\mathcal A} $ | ||
+ | is the class of all subsets of $ \Omega $; | ||
+ | $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $ | ||
+ | (this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2); | ||
− | + | 2) $ \Omega = \{ 0, 1 , . . . \} $; | |
+ | $ {\mathcal A} $ | ||
+ | is the class of all subsets of $ \Omega $; | ||
− | + | $$ | |
+ | {\mathsf P} ( \{ k \} ) = \ | ||
− | + | \frac{\lambda ^ {k} }{k!} | |
+ | e ^ {- \lambda } , | ||
+ | $$ | ||
− | where | + | where $ \lambda > 0 $ |
+ | (the [[Poisson distribution|Poisson distribution]]); | ||
− | 3) | + | 3) $ \Omega = \mathbf R ^ {1} $; |
+ | $ {\mathcal A} $ | ||
+ | is the class of Borel subsets of $ \mathbf R ^ {1} $; | ||
− | + | $$ | |
+ | {\mathsf P} ( A) = \ | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ { A } e ^ {- x ^ {2} /2 } dx | ||
+ | $$ | ||
(the [[Normal distribution|normal distribution]]); | (the [[Normal distribution|normal distribution]]); | ||
− | 4) | + | 4) $ \Omega = C _ {0} [ 0, 1] $ |
+ | is the space of continuous real functions $ x( t) $ | ||
+ | on $ [ 0, 1] $ | ||
+ | that vanish at the point zero; $ {\mathcal A} $ | ||
+ | is the class of Borel subsets with respect to the topology of uniform convergence; $ {\mathsf P} $ | ||
+ | is the measure which is uniquely defined by the formula | ||
+ | |||
+ | $$ | ||
+ | {\mathsf P} ( x : a _ {i} < x ( t _ {i} ) < b _ {i} ,\ | ||
+ | i = 1 \dots n) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | ( 2 \pi ) ^ {- n/2} \prod _ { i=1 } ^ { n } ( t _ {i} - t _ {i-1} ) ^ {- 1/2} \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \int\limits _ { a _ {1} } ^ { {b _ 1 } } \dots \int\limits | ||
+ | _ {a _ {n} } ^ { {b _ n} } \mathop{\rm exp} \left \{ - | ||
+ | \frac{1}{2} | ||
− | + | \sum _ { i=1 } ^ { n } | |
+ | \frac{( x _ {i} - x _ {i-1} ) ^ {2} }{t _ {i} - t _ {i-1} } | ||
+ | \right \} dx _ {1} \dots d x _ {n} , | ||
+ | $$ | ||
− | where | + | where $ n $ |
+ | is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $ | ||
+ | (the [[Wiener measure|Wiener measure]]). | ||
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|K}}|| A.N. Kolmogorov, "Foundations of the theory of probability" , Chelsea, reprint (1950) (Translated from Russian) {{MR|0032961}} {{ZBL|}} | |
− | + | |- | |
+ | |valign="top"|{{Ref|G}}|| B.V. Gnedenko, [[Gnedenko, "A course in the theory of probability"|"The theory of probability"]], Chelsea, reprint (1962) (Translated from Russian) | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|B}}|| P. Billingsley, "Probability and measure" , Wiley (1979) {{MR|0534323}} {{ZBL|0411.60001}} | ||
+ | |} |
Latest revision as of 19:48, 8 January 2021
probability distribution, probability
2020 Mathematics Subject Classification: Primary: 60-01 [MSN][ZBL]
A real non-negative function $ {\mathsf P} $ on a class $ {\mathcal A} $ of subsets (events) of a non-empty set $ \Omega $ (the space of elementary events) forming a $ \sigma $- field (i.e. a set closed with respect to countable set-theoretic operations) such that
$$ {\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ {\mathsf P} \left ( \cup _ { i=1} ^ \infty A _ {i} \right ) = \ \sum _ { i=1 } ^ \infty {\mathsf P} ( A _ {i} ) $$
if $ A _ {i} \cap A _ {j} = \emptyset $ for $ i \neq j $( $ \sigma $- additivity).
Examples of probability measures.
1) $ \Omega = \{ 1, 2 \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $; $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $ (this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2);
2) $ \Omega = \{ 0, 1 , . . . \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $;
$$ {\mathsf P} ( \{ k \} ) = \ \frac{\lambda ^ {k} }{k!} e ^ {- \lambda } , $$
where $ \lambda > 0 $ (the Poisson distribution);
3) $ \Omega = \mathbf R ^ {1} $; $ {\mathcal A} $ is the class of Borel subsets of $ \mathbf R ^ {1} $;
$$ {\mathsf P} ( A) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ { A } e ^ {- x ^ {2} /2 } dx $$ (the normal distribution);
4) $ \Omega = C _ {0} [ 0, 1] $ is the space of continuous real functions $ x( t) $ on $ [ 0, 1] $ that vanish at the point zero; $ {\mathcal A} $ is the class of Borel subsets with respect to the topology of uniform convergence; $ {\mathsf P} $ is the measure which is uniquely defined by the formula
$$ {\mathsf P} ( x : a _ {i} < x ( t _ {i} ) < b _ {i} ,\ i = 1 \dots n) = $$
$$ = \ ( 2 \pi ) ^ {- n/2} \prod _ { i=1 } ^ { n } ( t _ {i} - t _ {i-1} ) ^ {- 1/2} \times $$
$$ \times \int\limits _ { a _ {1} } ^ { {b _ 1 } } \dots \int\limits _ {a _ {n} } ^ { {b _ n} } \mathop{\rm exp} \left \{ - \frac{1}{2} \sum _ { i=1 } ^ { n } \frac{( x _ {i} - x _ {i-1} ) ^ {2} }{t _ {i} - t _ {i-1} } \right \} dx _ {1} \dots d x _ {n} , $$
where $ n $ is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $ (the Wiener measure).
References
[K] | A.N. Kolmogorov, "Foundations of the theory of probability" , Chelsea, reprint (1950) (Translated from Russian) MR0032961 |
[G] | B.V. Gnedenko, "The theory of probability", Chelsea, reprint (1962) (Translated from Russian) |
Comments
References
[B] | P. Billingsley, "Probability and measure" , Wiley (1979) MR0534323 Zbl 0411.60001 |
Probability measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Probability_measure&oldid=24183