|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | c0231301.png |
| + | $#A+1 = 244 n = 1 |
| + | $#C+1 = 244 : ~/encyclopedia/old_files/data/C023/C.0203130 Cohomology of groups |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]]. | | Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]]. |
| | | |
− | With every pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231301.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231302.png" /> is a group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231303.png" /> a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231304.png" />-module (that is, a module over the integral group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231305.png" />), there is associated a sequence of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231306.png" />, called the cohomology groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231307.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231308.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c0231309.png" />, which runs over the non-negative integers, is called the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313010.png" />. The cohomology groups of groups are important invariants containing information both on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313011.png" /> and on the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313012.png" />. | + | With every pair $ ( G, A) $, |
| + | where $ G $ |
| + | is a group and $ A $ |
| + | a left $ G $- |
| + | module (that is, a module over the integral group ring $ \mathbf Z G $), |
| + | there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $, |
| + | called the cohomology groups of $ G $ |
| + | with coefficients in $ A $. |
| + | The number $ n $, |
| + | which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $. |
| + | The cohomology groups of groups are important invariants containing information both on the group $ G $ |
| + | and on the module $ A $. |
| | | |
− | By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313013.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313015.png" /> is the submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313016.png" />-invariant elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313017.png" />. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313019.png" />, are defined as the values of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313020.png" />-th [[Derived functor|derived functor]] of the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313021.png" />. Let | + | By definition, $ H ^ {0} ( G, A) $ |
| + | is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $, |
| + | where $ A ^ {G} $ |
| + | is the submodule of $ G $- |
| + | invariant elements in $ A $. |
| + | The groups $ H ^ { n } ( G, A) $, |
| + | $ n > 1 $, |
| + | are defined as the values of the $ n $- |
| + | th [[Derived functor|derived functor]] of the functor $ A \mapsto H ^ {0} ( G, A) $. |
| + | Let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313022.png" /></td> </tr></table>
| + | $$ |
| + | \dots \rightarrow ^ { {d _ n} } \ |
| + | P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \ |
| + | P _ {n - 1 } \rightarrow \dots \rightarrow \ |
| + | P _ {0} \rightarrow \mathbf Z \rightarrow 0 |
| + | $$ |
| | | |
− | be some projective [[Resolution|resolution]] of the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313023.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313024.png" /> in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313025.png" />-modules, that is, an exact sequence in which every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313026.png" /> is a projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313027.png" />-module. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313028.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313029.png" />-th cohomology group of the [[Complex|complex]] | + | be some projective [[Resolution|resolution]] of the trivial $ G $- |
| + | module $ \mathbf Z $ |
| + | in the category of $ G $- |
| + | modules, that is, an exact sequence in which every $ P _ {i} $ |
| + | is a projective $ \mathbf Z G $- |
| + | module. Then $ H ^ { n } ( G, A) $ |
| + | is the $ n $- |
| + | th cohomology group of the [[Complex|complex]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313030.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \ |
| + | \mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313031.png" /> is induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313032.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313033.png" />. | + | where $ d _ {n} ^ { \prime } $ |
| + | is induced by $ d _ {n} $, |
| + | that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $. |
| | | |
− | The homology groups of a group are defined using the dual construction, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313034.png" /> is replaced everywhere by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313035.png" />. | + | The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $ |
| + | is replaced everywhere by $ \otimes _ {G} $. |
| | | |
− | The set of functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313037.png" /> is a cohomological functor (see [[Homology functor|Homology functor]]; [[Cohomology functor|Cohomology functor]]) on the category of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313038.png" />-modules. | + | The set of functors $ A \mapsto H ^ { n } ( G, A) $, |
| + | $ n = 0, 1 \dots $ |
| + | is a cohomological functor (see [[Homology functor|Homology functor]]; [[Cohomology functor|Cohomology functor]]) on the category of left $ G $- |
| + | modules. |
| | | |
− | A module of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313039.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313040.png" /> is an Abelian group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313041.png" /> acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313042.png" /> according to the formula | + | A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $, |
| + | where $ X $ |
| + | is an Abelian group and $ G $ |
| + | acts on $ B $ |
| + | according to the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313043.png" /></td> </tr></table>
| + | $$ |
| + | ( g \phi ) ( t) = \ |
| + | \phi ( tg),\ \ |
| + | \phi \in B,\ \ |
| + | t \in \mathbf Z G, |
| + | $$ |
| | | |
− | is said to be co-induced. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313044.png" /> is injective or co-induced, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313045.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313046.png" />. Every module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313047.png" /> is isomorphic to a submodule of a co-induced module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313048.png" />. The exact homology sequence for the sequence | + | is said to be co-induced. If $ A $ |
| + | is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $ |
| + | for $ n \geq 1 $. |
| + | Every module $ A $ |
| + | is isomorphic to a submodule of a co-induced module $ B $. |
| + | The exact homology sequence for the sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313049.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 |
| + | $$ |
| | | |
− | then defines isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313051.png" />, and an exact sequence | + | then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $, |
| + | $ n \geq 1 $, |
| + | and an exact sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313052.png" /></td> </tr></table>
| + | $$ |
| + | B ^ {G} \rightarrow \ |
| + | ( B/A) ^ {G} \rightarrow \ |
| + | H ^ {1} ( G, A) \rightarrow 0. |
| + | $$ |
| | | |
− | Therefore, the computation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313053.png" />-dimensional cohomology group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313054.png" /> reduces to calculating the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313055.png" />-dimensional cohomology group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png" />. This device is called dimension shifting. | + | Therefore, the computation of the $ ( n + 1) $- |
| + | dimensional cohomology group of $ A $ |
| + | reduces to calculating the $ n $- |
| + | dimensional cohomology group of $ B/A $. |
| + | This device is called dimension shifting. |
| | | |
− | Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313057.png" /> from the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313058.png" />-modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313060.png" />, for every co-induced module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313061.png" />. | + | Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $ |
| + | from the category of $ G $- |
| + | modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $, |
| + | $ n \geq 1 $, |
| + | for every co-induced module $ B $. |
| | | |
− | The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313062.png" /> can also be defined as equivalence classes of exact sequences of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313063.png" />-modules of the form | + | The groups $ H ^ { n } ( G, A) $ |
| + | can also be defined as equivalence classes of exact sequences of $ G $- |
| + | modules of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313064.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0 |
| + | $$ |
| | | |
| with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4). | | with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4). |
| | | |
− | To compute the cohomology groups, the standard resolution of the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313065.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313066.png" /> is generally used, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313067.png" /> and, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313068.png" />, | + | To compute the cohomology groups, the standard resolution of the trivial $ G $- |
| + | module $ \mathbf Z $ |
| + | is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $ |
| + | and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313069.png" /></td> </tr></table>
| + | $$ |
| + | d _ {n} ( g _ {0} \dots g _ {n} ) = \ |
| + | \sum _ {i = 0 } ^ { n } (- 1) ^ {i} |
| + | ( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ), |
| + | $$ |
| | | |
− | where the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313070.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313071.png" /> means that the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313072.png" /> is omitted. The cochains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313073.png" /> are the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313074.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313075.png" />. Changing variables according to the rules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313078.png" />, one can go over to inhomogeneous cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313079.png" />. The coboundary operation then acts as follows: | + | where the symbol $ \widehat{ {}} $ |
| + | over $ g _ {i} $ |
| + | means that the term $ g _ {i} $ |
| + | is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $ |
| + | are the functions $ f ( g _ {0} \dots g _ {n} ) $ |
| + | for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $. |
| + | Changing variables according to the rules $ g _ {0} = 1 $, |
| + | $ g _ {1} = h _ {1} $, |
| + | $ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $, |
| + | one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $. |
| + | The coboundary operation then acts as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313080.png" /></td> </tr></table>
| + | $$ |
| + | d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \ |
| + | h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) + |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313081.png" /></td> </tr></table>
| + | $$ |
| + | + |
| + | \sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) + |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313082.png" /></td> </tr></table>
| + | $$ |
| + | + |
| + | (- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ). |
| + | $$ |
| | | |
− | For example, a one-dimensional cocycle is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313083.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313084.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313085.png" />, and a coboundary is a function of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313086.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313087.png" />. A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313088.png" /> acts trivially on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313089.png" />, crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313090.png" /> in this case. | + | For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $ |
| + | for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $ |
| + | for all $ g _ {1} , g _ {2} \in G $, |
| + | and a coboundary is a function of the form $ f ( g) = ga - a $ |
| + | for some $ a \in A $. |
| + | A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $ |
| + | acts trivially on $ A $, |
| + | crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $ |
| + | in this case. |
| | | |
− | The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313091.png" /> can be interpreted as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313092.png" />-conjugacy classes of sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313093.png" /> in the exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313094.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313095.png" /> is the [[Semi-direct product|semi-direct product]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313097.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313098.png" /> can be interpreted as classes of extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313099.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130100.png" />. Finally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130101.png" /> can be interpreted as obstructions to extensions of non-Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130102.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130103.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130104.png" /> (see [[#References|[1]]]). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130105.png" />, there are no analogous interpretations known (1978) for the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130106.png" />. | + | The elements of $ H ^ {1} ( G, A) $ |
| + | can be interpreted as the $ A $- |
| + | conjugacy classes of sections $ G \rightarrow F $ |
| + | in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $, |
| + | where $ F $ |
| + | is the [[Semi-direct product|semi-direct product]] of $ G $ |
| + | and $ A $. |
| + | The elements of $ H ^ {2} ( G, A) $ |
| + | can be interpreted as classes of extensions of $ A $ |
| + | by $ G $. |
| + | Finally, $ H ^ {3} ( G, A) $ |
| + | can be interpreted as obstructions to extensions of non-Abelian groups $ H $ |
| + | with centre $ A $ |
| + | by $ G $( |
| + | see [[#References|[1]]]). For $ n > 3 $, |
| + | there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130107.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130108.png" />, then restriction of cocycles from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130109.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130110.png" /> defines functorial restriction homomorphisms for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130111.png" />: | + | If $ H $ |
| + | is a subgroup of $ G $, |
| + | then restriction of cocycles from $ G $ |
| + | to $ H $ |
| + | defines functorial restriction homomorphisms for all $ n $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130112.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm res} : \ |
| + | H ^ { n } ( G, A) \rightarrow \ |
| + | H ^ { n } ( H, A). |
| + | $$ |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130114.png" /> is just the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130115.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130116.png" /> is some quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130117.png" />, then lifting cocycles from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130118.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130119.png" /> induces the functorial inflation homomorphism | + | For $ n = 0 $, |
| + | $ \mathop{\rm res} $ |
| + | is just the imbedding $ A ^ {G} \subset A ^ {H} $. |
| + | If $ G/H $ |
| + | is some quotient group of $ G $, |
| + | then lifting cocycles from $ G/H $ |
| + | to $ G $ |
| + | induces the functorial inflation homomorphism |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130120.png" /></td> </tr></table>
| + | $$ |
| + | \inf : \ |
| + | H ^ { n } ( G/H,\ |
| + | A ^ {H} ) \rightarrow \ |
| + | H ^ { n } ( G, A). |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130121.png" /> be a homomorphism. Then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130122.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130123.png" /> can be regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130124.png" />-module by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130125.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130126.png" />. Combining the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130127.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130128.png" /> gives mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130129.png" />. In this sense <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130130.png" /> is a contravariant functor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130131.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130132.png" /> is a group of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130133.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130134.png" /> can be given the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130135.png" />-module. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130136.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130137.png" />, the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130138.png" /> can be equipped with a natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130139.png" />-module structure. This is possible thanks to the fact that inner automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130140.png" /> induce the identity mapping on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130141.png" />. In particular, for a normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130142.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130143.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130144.png" />. | + | Let $ \phi : G ^ \prime \rightarrow G $ |
| + | be a homomorphism. Then every $ G $- |
| + | module $ A $ |
| + | can be regarded as a $ G ^ \prime $- |
| + | module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $ |
| + | for $ g ^ \prime \in G ^ \prime $. |
| + | Combining the mappings $ \mathop{\rm res} $ |
| + | and $ \inf $ |
| + | gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $. |
| + | In this sense $ H ^ {*} ( G, A) $ |
| + | is a contravariant functor of $ G $. |
| + | If $ \Pi $ |
| + | is a group of automorphisms of $ G $, |
| + | then $ H ^ { n } ( G, A) $ |
| + | can be given the structure of a $ \Pi $- |
| + | module. For example, if $ H $ |
| + | is a normal subgroup of $ G $, |
| + | the groups $ H ^ { n } ( H, A) $ |
| + | can be equipped with a natural $ G/H $- |
| + | module structure. This is possible thanks to the fact that inner automorphisms of $ G $ |
| + | induce the identity mapping on the $ H ^ { n } ( G, A) $. |
| + | In particular, for a normal subgroup $ H $ |
| + | in $ G $, |
| + | $ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130145.png" /> be a subgroup of finite index in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130146.png" />. Using the norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130147.png" />, one can use dimension shifting to define the functorial co-restriction mappings for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130148.png" />: | + | Let $ H $ |
| + | be a subgroup of finite index in the group $ G $. |
| + | Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $, |
| + | one can use dimension shifting to define the functorial co-restriction mappings for all $ n $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130149.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm cores} : \ |
| + | H ^ { n } ( H, A) \rightarrow \ |
| + | H ^ { n } ( G, A). |
| + | $$ |
| | | |
− | These satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130150.png" />. | + | These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130151.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130152.png" /> then there exists the Lyndon spectral sequence with second term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130153.png" /> converging to the cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130154.png" /> (see [[#References|[1]]], Chapt. 11). In small dimensions it leads to the exact sequence | + | If $ H $ |
| + | is a normal subgroup of $ G $ |
| + | then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $ |
| + | converging to the cohomology $ H ^ { n } ( G, A) $( |
| + | see [[#References|[1]]], Chapt. 11). In small dimensions it leads to the exact sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130155.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow H ^ {1} ( G/H, A ^ {H} ) |
| + | \mathop \rightarrow \limits ^ { \inf } \ |
| + | H ^ {1} ( G, A) |
| + | \mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \ |
| + | H ^ {1} ( H, A) ^ {G/H} |
| + | \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130156.png" /></td> </tr></table>
| + | $$ |
| + | \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A), |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130157.png" /> is the transgression mapping. | + | where $ \mathop{\rm tr} $ |
| + | is the transgression mapping. |
| | | |
− | For a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130158.png" />, the norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130159.png" /> induces the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130160.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130161.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130162.png" /> is the ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130163.png" /> generated by the elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130164.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130165.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130166.png" /> can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130167.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130168.png" />. Here | + | For a finite group $ G $, |
| + | the norm map $ N _ {G} : A \rightarrow A $ |
| + | induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $, |
| + | where $ H _ {0} ( G, A) = A/J _ {G} A $ |
| + | and $ J _ {G} $ |
| + | is the ideal of $ \mathbf Z G $ |
| + | generated by the elements of the form $ g - 1 $, |
| + | $ g \in G $. |
| + | The mapping $ N _ {G} $ |
| + | can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $ |
| + | for all $ n $. |
| + | Here |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130169.png" /></td> </tr></table>
| + | $$ |
| + | \widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \ |
| + | \textrm{ for } n \geq 1, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130170.png" /></td> </tr></table>
| + | $$ |
| + | \widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130171.png" /></td> </tr></table>
| + | $$ |
| + | \widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} . |
| + | $$ |
| | | |
− | For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130172.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130173.png" /> is said to be cohomologically trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130174.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130175.png" /> and all subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130176.png" />. A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130177.png" /> is cohomologically trivial if and only if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130178.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130179.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130180.png" /> for every subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130181.png" />. Every module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130182.png" /> is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130183.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130184.png" /> (but not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130185.png" />) for all integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130186.png" />. For a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130187.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130188.png" /> the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130189.png" /> are finite. | + | For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $- |
| + | module $ A $ |
| + | is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $ |
| + | for all $ n $ |
| + | and all subgroups $ H \subseteq G $. |
| + | A module $ A $ |
| + | is cohomologically trivial if and only if there is an $ i $ |
| + | such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $ |
| + | and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $ |
| + | for every subgroup $ H \subseteq G $. |
| + | Every module $ A $ |
| + | is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $ |
| + | and $ \mathop{\rm cores} $( |
| + | but not $ \inf $) |
| + | for all integral $ n $. |
| + | For a finitely-generated $ G $- |
| + | module $ A $ |
| + | the groups $ \widehat{H} {} ^ {n } ( G, A) $ |
| + | are finite. |
| | | |
− | The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130190.png" /> are annihilated on multiplication by the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130191.png" />, and the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130192.png" />, induced by restrictions, is a monomorphism, where now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130193.png" /> is a Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130194.png" />-subgroup (cf. [[Sylow subgroup|Sylow subgroup]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130195.png" />. A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130196.png" />-groups. The cohomology of cyclic groups has period 2, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130197.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130198.png" />. | + | The groups $ \widehat{H} {} ^ {n } ( G, A) $ |
| + | are annihilated on multiplication by the order of $ G $, |
| + | and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $, |
| + | induced by restrictions, is a monomorphism, where now $ G _ {p} $ |
| + | is a Sylow $ p $- |
| + | subgroup (cf. [[Sylow subgroup|Sylow subgroup]]) of $ G $. |
| + | A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $- |
| + | groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $ |
| + | for all $ n $. |
| | | |
− | For arbitrary integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130199.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130200.png" /> there is defined a mapping | + | For arbitrary integers $ m $ |
| + | and $ n $ |
| + | there is defined a mapping |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130201.png" /></td> </tr></table>
| + | $$ |
| + | \widehat{H} {} ^ {n } ( G, A) \otimes |
| + | \widehat{H} {} ^ {m} ( G, B) \rightarrow \ |
| + | \widehat{H} {} ^ {n + m } ( G, A \otimes B), |
| + | $$ |
| | | |
− | (called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130203.png" />-product, cup-product), where the tensor product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130204.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130205.png" /> is viewed as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130206.png" />-module. In the special case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130207.png" /> is a ring and the operations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130208.png" /> are automorphisms, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130209.png" />-product turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130210.png" /> into a graded ring. The duality theorem for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130212.png" />-products asserts that, for every divisible Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130213.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130214.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130215.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130216.png" />-product | + | (called $ \cup $- |
| + | product, cup-product), where the tensor product of $ A $ |
| + | and $ B $ |
| + | is viewed as a $ G $- |
| + | module. In the special case where $ A $ |
| + | is a ring and the operations in $ G $ |
| + | are automorphisms, the $ \cup $- |
| + | product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $ |
| + | into a graded ring. The duality theorem for $ \cup $- |
| + | products asserts that, for every divisible Abelian group $ C $ |
| + | and every $ G $- |
| + | module $ A $, |
| + | the $ \cup $- |
| + | product |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130217.png" /></td> </tr></table>
| + | $$ |
| + | \widehat{H} {} ^ {n } ( G, A) \otimes |
| + | \widehat{H} {} ^ {- n - 1 } |
| + | ( G, \mathop{\rm Hom} ( A, C)) \rightarrow \ |
| + | \widehat{H} {} ^ {-} 1 ( G, C) |
| + | $$ |
| | | |
− | defines a group isomorphism between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130218.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130219.png" /> (see [[#References|[2]]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130220.png" />-product is also defined for infinite groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130221.png" /> provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130222.png" />. | + | defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $ |
| + | and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $( |
| + | see [[#References|[2]]]). The $ \cup $- |
| + | product is also defined for infinite groups $ G $ |
| + | provided that $ n, m > 0 $. |
| | | |
− | Many problems lead to the necessity of considering the cohomology of a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130223.png" /> acting continuously on a topological module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130224.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130225.png" /> is a [[Profinite group|profinite group]] (the case nearest to that of finite groups) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130226.png" /> is a discrete Abelian group that is a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130227.png" />-module, one can consider the cohomology groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130228.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130229.png" />, computed in terms of continuous cochains [[#References|[5]]]. These groups can also be defined as the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130230.png" /> with respect to the inflation mapping, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130231.png" /> runs over all open normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130232.png" />. This cohomology has all the usual properties of the cohomology of finite groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130233.png" /> is a pro-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130234.png" />-group, the dimension over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130235.png" /> of the first and second cohomology groups with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130236.png" /> are interpreted as the minimum number of generators and relations (between these generators) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130237.png" />, respectively. | + | Many problems lead to the necessity of considering the cohomology of a topological group $ G $ |
| + | acting continuously on a topological module $ A $. |
| + | In particular, if $ G $ |
| + | is a [[Profinite group|profinite group]] (the case nearest to that of finite groups) and $ A $ |
| + | is a discrete Abelian group that is a continuous $ G $- |
| + | module, one can consider the cohomology groups of $ G $ |
| + | with coefficients in $ A $, |
| + | computed in terms of continuous cochains [[#References|[5]]]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $ |
| + | with respect to the inflation mapping, where $ U $ |
| + | runs over all open normal subgroups of $ G $. |
| + | This cohomology has all the usual properties of the cohomology of finite groups. If $ G $ |
| + | is a pro- $ p $- |
| + | group, the dimension over $ \mathbf Z /p \mathbf Z $ |
| + | of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $ |
| + | are interpreted as the minimum number of generators and relations (between these generators) of $ G $, |
| + | respectively. |
| | | |
| See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group. | | See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967) {{MR|0215665}} {{ZBL|0153.07403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0181643}} {{ZBL|0143.05901}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130238.png" />-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> ''Itogi Nauk. Mat. Algebra. 1964'' (1966) pp. 202–235</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967) {{MR|0215665}} {{ZBL|0153.07403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0180551}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> ''Itogi Nauk. Mat. Algebra. 1964'' (1966) pp. 202–235</TD></TR></table> |
− | | |
− | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | The norm map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130239.png" /> is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130240.png" /> be a set of representatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130241.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130242.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130243.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130244.png" />. For a definition of the transgression relation in general spectral sequences cf. [[Spectral sequence|Spectral sequence]]; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130245.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130246.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c023130247.png" />, cf. also [[#References|[a1]]], Chapt. 11, Par. 9. | + | The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $ |
| + | is defined as follows. Let $ g _ {1} \dots g _ {k} $ |
| + | be a set of representatives of $ G/H $ |
| + | in $ G $. |
| + | Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $ |
| + | in $ A ^ {G} $. |
| + | For a definition of the transgression relation in general spectral sequences cf. [[Spectral sequence|Spectral sequence]]; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $ |
| + | and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $ |
| + | for all $ n > 0 $, |
| + | cf. also [[#References|[a1]]], Chapt. 11, Par. 9. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.S. Brown, "Cohomology of groups" , Springer (1982) {{MR|0672956}} {{ZBL|0584.20036}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.S. Brown, "Cohomology of groups" , Springer (1982) {{MR|0672956}} {{ZBL|0584.20036}} </TD></TR></table> |
Historically, the earliest theory of a cohomology of algebras.
With every pair $ ( G, A) $,
where $ G $
is a group and $ A $
a left $ G $-
module (that is, a module over the integral group ring $ \mathbf Z G $),
there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $,
called the cohomology groups of $ G $
with coefficients in $ A $.
The number $ n $,
which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $.
The cohomology groups of groups are important invariants containing information both on the group $ G $
and on the module $ A $.
By definition, $ H ^ {0} ( G, A) $
is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $,
where $ A ^ {G} $
is the submodule of $ G $-
invariant elements in $ A $.
The groups $ H ^ { n } ( G, A) $,
$ n > 1 $,
are defined as the values of the $ n $-
th derived functor of the functor $ A \mapsto H ^ {0} ( G, A) $.
Let
$$
\dots \rightarrow ^ { {d _ n} } \
P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \
P _ {n - 1 } \rightarrow \dots \rightarrow \
P _ {0} \rightarrow \mathbf Z \rightarrow 0
$$
be some projective resolution of the trivial $ G $-
module $ \mathbf Z $
in the category of $ G $-
modules, that is, an exact sequence in which every $ P _ {i} $
is a projective $ \mathbf Z G $-
module. Then $ H ^ { n } ( G, A) $
is the $ n $-
th cohomology group of the complex
$$
0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \
\mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots ,
$$
where $ d _ {n} ^ { \prime } $
is induced by $ d _ {n} $,
that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $.
The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $
is replaced everywhere by $ \otimes _ {G} $.
The set of functors $ A \mapsto H ^ { n } ( G, A) $,
$ n = 0, 1 \dots $
is a cohomological functor (see Homology functor; Cohomology functor) on the category of left $ G $-
modules.
A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $,
where $ X $
is an Abelian group and $ G $
acts on $ B $
according to the formula
$$
( g \phi ) ( t) = \
\phi ( tg),\ \
\phi \in B,\ \
t \in \mathbf Z G,
$$
is said to be co-induced. If $ A $
is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $
for $ n \geq 1 $.
Every module $ A $
is isomorphic to a submodule of a co-induced module $ B $.
The exact homology sequence for the sequence
$$
0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0
$$
then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $,
$ n \geq 1 $,
and an exact sequence
$$
B ^ {G} \rightarrow \
( B/A) ^ {G} \rightarrow \
H ^ {1} ( G, A) \rightarrow 0.
$$
Therefore, the computation of the $ ( n + 1) $-
dimensional cohomology group of $ A $
reduces to calculating the $ n $-
dimensional cohomology group of $ B/A $.
This device is called dimension shifting.
Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $
from the category of $ G $-
modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $,
$ n \geq 1 $,
for every co-induced module $ B $.
The groups $ H ^ { n } ( G, A) $
can also be defined as equivalence classes of exact sequences of $ G $-
modules of the form
$$
0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0
$$
with respect to a suitably defined equivalence relation (see [1], Chapt. 3, 4).
To compute the cohomology groups, the standard resolution of the trivial $ G $-
module $ \mathbf Z $
is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $
and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $,
$$
d _ {n} ( g _ {0} \dots g _ {n} ) = \
\sum _ {i = 0 } ^ { n } (- 1) ^ {i}
( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ),
$$
where the symbol $ \widehat{ {}} $
over $ g _ {i} $
means that the term $ g _ {i} $
is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $
are the functions $ f ( g _ {0} \dots g _ {n} ) $
for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $.
Changing variables according to the rules $ g _ {0} = 1 $,
$ g _ {1} = h _ {1} $,
$ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $,
one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $.
The coboundary operation then acts as follows:
$$
d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \
h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) +
$$
$$
+
\sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) +
$$
$$
+
(- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ).
$$
For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $
for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $
for all $ g _ {1} , g _ {2} \in G $,
and a coboundary is a function of the form $ f ( g) = ga - a $
for some $ a \in A $.
A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $
acts trivially on $ A $,
crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $
in this case.
The elements of $ H ^ {1} ( G, A) $
can be interpreted as the $ A $-
conjugacy classes of sections $ G \rightarrow F $
in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $,
where $ F $
is the semi-direct product of $ G $
and $ A $.
The elements of $ H ^ {2} ( G, A) $
can be interpreted as classes of extensions of $ A $
by $ G $.
Finally, $ H ^ {3} ( G, A) $
can be interpreted as obstructions to extensions of non-Abelian groups $ H $
with centre $ A $
by $ G $(
see [1]). For $ n > 3 $,
there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $.
If $ H $
is a subgroup of $ G $,
then restriction of cocycles from $ G $
to $ H $
defines functorial restriction homomorphisms for all $ n $:
$$
\mathop{\rm res} : \
H ^ { n } ( G, A) \rightarrow \
H ^ { n } ( H, A).
$$
For $ n = 0 $,
$ \mathop{\rm res} $
is just the imbedding $ A ^ {G} \subset A ^ {H} $.
If $ G/H $
is some quotient group of $ G $,
then lifting cocycles from $ G/H $
to $ G $
induces the functorial inflation homomorphism
$$
\inf : \
H ^ { n } ( G/H,\
A ^ {H} ) \rightarrow \
H ^ { n } ( G, A).
$$
Let $ \phi : G ^ \prime \rightarrow G $
be a homomorphism. Then every $ G $-
module $ A $
can be regarded as a $ G ^ \prime $-
module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $
for $ g ^ \prime \in G ^ \prime $.
Combining the mappings $ \mathop{\rm res} $
and $ \inf $
gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $.
In this sense $ H ^ {*} ( G, A) $
is a contravariant functor of $ G $.
If $ \Pi $
is a group of automorphisms of $ G $,
then $ H ^ { n } ( G, A) $
can be given the structure of a $ \Pi $-
module. For example, if $ H $
is a normal subgroup of $ G $,
the groups $ H ^ { n } ( H, A) $
can be equipped with a natural $ G/H $-
module structure. This is possible thanks to the fact that inner automorphisms of $ G $
induce the identity mapping on the $ H ^ { n } ( G, A) $.
In particular, for a normal subgroup $ H $
in $ G $,
$ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $.
Let $ H $
be a subgroup of finite index in the group $ G $.
Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $,
one can use dimension shifting to define the functorial co-restriction mappings for all $ n $:
$$
\mathop{\rm cores} : \
H ^ { n } ( H, A) \rightarrow \
H ^ { n } ( G, A).
$$
These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $.
If $ H $
is a normal subgroup of $ G $
then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $
converging to the cohomology $ H ^ { n } ( G, A) $(
see [1], Chapt. 11). In small dimensions it leads to the exact sequence
$$
0 \rightarrow H ^ {1} ( G/H, A ^ {H} )
\mathop \rightarrow \limits ^ { \inf } \
H ^ {1} ( G, A)
\mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \
H ^ {1} ( H, A) ^ {G/H}
\mathop \rightarrow \limits ^ { { \mathop{\rm tr}} }
$$
$$
\mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A),
$$
where $ \mathop{\rm tr} $
is the transgression mapping.
For a finite group $ G $,
the norm map $ N _ {G} : A \rightarrow A $
induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $,
where $ H _ {0} ( G, A) = A/J _ {G} A $
and $ J _ {G} $
is the ideal of $ \mathbf Z G $
generated by the elements of the form $ g - 1 $,
$ g \in G $.
The mapping $ N _ {G} $
can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $
for all $ n $.
Here
$$
\widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \
\textrm{ for } n \geq 1,
$$
$$
\widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1,
$$
$$
\widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} .
$$
For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $-
module $ A $
is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $
for all $ n $
and all subgroups $ H \subseteq G $.
A module $ A $
is cohomologically trivial if and only if there is an $ i $
such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $
and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $
for every subgroup $ H \subseteq G $.
Every module $ A $
is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $
and $ \mathop{\rm cores} $(
but not $ \inf $)
for all integral $ n $.
For a finitely-generated $ G $-
module $ A $
the groups $ \widehat{H} {} ^ {n } ( G, A) $
are finite.
The groups $ \widehat{H} {} ^ {n } ( G, A) $
are annihilated on multiplication by the order of $ G $,
and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $,
induced by restrictions, is a monomorphism, where now $ G _ {p} $
is a Sylow $ p $-
subgroup (cf. Sylow subgroup) of $ G $.
A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $-
groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $
for all $ n $.
For arbitrary integers $ m $
and $ n $
there is defined a mapping
$$
\widehat{H} {} ^ {n } ( G, A) \otimes
\widehat{H} {} ^ {m} ( G, B) \rightarrow \
\widehat{H} {} ^ {n + m } ( G, A \otimes B),
$$
(called $ \cup $-
product, cup-product), where the tensor product of $ A $
and $ B $
is viewed as a $ G $-
module. In the special case where $ A $
is a ring and the operations in $ G $
are automorphisms, the $ \cup $-
product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $
into a graded ring. The duality theorem for $ \cup $-
products asserts that, for every divisible Abelian group $ C $
and every $ G $-
module $ A $,
the $ \cup $-
product
$$
\widehat{H} {} ^ {n } ( G, A) \otimes
\widehat{H} {} ^ {- n - 1 }
( G, \mathop{\rm Hom} ( A, C)) \rightarrow \
\widehat{H} {} ^ {-} 1 ( G, C)
$$
defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $
and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $(
see [2]). The $ \cup $-
product is also defined for infinite groups $ G $
provided that $ n, m > 0 $.
Many problems lead to the necessity of considering the cohomology of a topological group $ G $
acting continuously on a topological module $ A $.
In particular, if $ G $
is a profinite group (the case nearest to that of finite groups) and $ A $
is a discrete Abelian group that is a continuous $ G $-
module, one can consider the cohomology groups of $ G $
with coefficients in $ A $,
computed in terms of continuous cochains [5]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $
with respect to the inflation mapping, where $ U $
runs over all open normal subgroups of $ G $.
This cohomology has all the usual properties of the cohomology of finite groups. If $ G $
is a pro- $ p $-
group, the dimension over $ \mathbf Z /p \mathbf Z $
of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $
are interpreted as the minimum number of generators and relations (between these generators) of $ G $,
respectively.
See [6] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See Non-Abelian cohomology for cohomology with a non-Abelian coefficient group.
References
[1] | S. MacLane, "Homology" , Springer (1963) Zbl 0818.18001 Zbl 0328.18009 |
[2] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305 |
[3] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) MR0215665 Zbl 0153.07403 |
[4] | J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303 |
[5] | H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970) |
[6] | Itogi Nauk. Mat. Algebra. 1964 (1966) pp. 202–235 |
The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $
is defined as follows. Let $ g _ {1} \dots g _ {k} $
be a set of representatives of $ G/H $
in $ G $.
Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $
in $ A ^ {G} $.
For a definition of the transgression relation in general spectral sequences cf. Spectral sequence; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $
and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $
for all $ n > 0 $,
cf. also [a1], Chapt. 11, Par. 9.
References