Namespaces
Variants
Actions

Difference between revisions of "Homological dimension"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
h0477401.png
 +
$#A+1 = 139 n = 0
 +
$#C+1 = 139 : ~/encyclopedia/old_files/data/H047/H.0407740 Homological dimension
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A numerical characteristic of an object in a [[Category|category]] with respect to a certain specified class of objects in this category. The categories of modules over a ring form the principal range of application of this concept.
 
A numerical characteristic of an object in a [[Category|category]] with respect to a certain specified class of objects in this category. The categories of modules over a ring form the principal range of application of this concept.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477401.png" /> be a fixed class of objects in an [[Abelian category|Abelian category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477402.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477403.png" /> be an object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477404.png" />. The (projective) homological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477405.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477406.png" /> is then defined as the least number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477407.png" /> for which there exists an [[Exact sequence|exact sequence]] of the form
+
Let $  \mathfrak B $
 +
be a fixed class of objects in an [[Abelian category|Abelian category]] $  \mathfrak A $,  
 +
and let $  A $
 +
be an object in $  \mathfrak A $.  
 +
The (projective) homological dimension of $  A $
 +
with respect to $  \mathfrak B $
 +
is then defined as the least number $  n $
 +
for which there exists an [[Exact sequence|exact sequence]] of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477408.png" /></td> </tr></table>
+
$$
 +
0  \rightarrow  B _ {n}  \rightarrow  B _ {n - 1 }  \rightarrow \dots
 +
\rightarrow  B _ {0}  \rightarrow  A  \rightarrow  0,
 +
$$
  
where all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h0477409.png" /> are from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774010.png" />. If such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774011.png" /> does not exist, one says that the homological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774012.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774013.png" />.
+
where all $  B _ {i} $
 +
are from $  \mathfrak B $.  
 +
If such an $  n $
 +
does not exist, one says that the homological dimension of $  A $
 +
is equal to $  \infty $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774014.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774015.png" />) be the category of left (respectively, right) modules over an associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774016.png" /> with a unit element. Then: a) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774017.png" /> is the class of all projective left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774018.png" />-modules, then the corresponding homological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774019.png" /> is also called the projective dimension and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774020.png" />; b) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774021.png" /> is the class of all flat left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774022.png" />-modules, then the corresponding homological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774023.png" /> is called the weak dimension and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774024.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774025.png" /> is the category of left graded modules (cf. [[Graded module|Graded module]]) over a graded ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774027.png" /> is the class of all left projective graded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774028.png" />-modules, then the corresponding homological dimension of a graded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774029.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774030.png" /> is called the graded projective dimension and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774031.png" />.
+
Let $  {} _ {R} \mathfrak M $(
 +
respectively, $  \mathfrak M _ {R} $)  
 +
be the category of left (respectively, right) modules over an associative ring $  R $
 +
with a unit element. Then: a) if $  \mathfrak B $
 +
is the class of all projective left $  R $-
 +
modules, then the corresponding homological dimension of $  A $
 +
is also called the projective dimension and is denoted by $  \mathop{\rm pd} _ {R} ( A) $;  
 +
b) if $  \mathfrak B $
 +
is the class of all flat left $  R $-
 +
modules, then the corresponding homological dimension of $  A $
 +
is called the weak dimension and is denoted by $  \mathop{\rm wdim} _ {R} ( A) $.  
 +
If $  \mathfrak A $
 +
is the category of left graded modules (cf. [[Graded module|Graded module]]) over a graded ring $  R $
 +
and $  \mathfrak B $
 +
is the class of all left projective graded $  R $-
 +
modules, then the corresponding homological dimension of a graded $  R $-
 +
module $  A $
 +
is called the graded projective dimension and is denoted by $  \textrm{ gr\AAh d  } _ {R} ( A) $.
  
A dual construction may also be considered. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774032.png" />, then the least number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774033.png" /> such that there exists an exact sequence
+
A dual construction may also be considered. If $  A \in {} _ {R} \mathfrak M $,  
 +
then the least number $  n $
 +
such that there exists an exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774034.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  \rightarrow  Q _ {0}  \rightarrow  Q _ {1}  \rightarrow \dots \rightarrow  Q _ {n}  \rightarrow  0,
 +
$$
  
where all the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774035.png" /> are injective, is said to be the injective dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774036.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774037.png" />.
+
where all the modules $  Q _ {i} $
 +
are injective, is said to be the injective dimension of $  A $
 +
and is denoted by $  \mathop{\rm id} _ {R} ( A) $.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774038.png" /> the following conditions are equivalent:
+
For $  A \in {} _ {R} \mathfrak M $
 +
the following conditions are equivalent:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774039.png" />;
+
a) $  \mathop{\rm id} _ {R} ( A) \leq  n $;
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774040.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774041.png" /> (cf. [[Functor|Functor]] Ext);
+
b) $  \mathop{\rm Ext} _ {R}  ^ {n+} 1 ( B, A) = 0 $
 +
for all $  B \in {} _ {R} \mathfrak M $(
 +
cf. [[Functor|Functor]] Ext);
  
b') <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774042.png" /> for all cyclic modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774043.png" />;
+
b') $  \mathop{\rm Ext} _ {R}  ^ {n+} 1 ( B, A) = 0 $
 +
for all cyclic modules $  B $;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774044.png" /> is a right-exact functor of the argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774045.png" />;
+
c) $  \mathop{\rm Ext} _ {R}  ^ {n} ( B, A) $
 +
is a right-exact functor of the argument $  B $;
  
 
d) if
 
d) if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774046.png" /></td> </tr></table>
+
$$
 +
0  \rightarrow  A  \rightarrow  Y _ {0}  \rightarrow \dots \rightarrow  Y _ {n - 1 }  \rightarrow  Y _ {n}  \rightarrow \
 +
0
 +
$$
  
is an exact sequence and if the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774047.png" /> are injective for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774048.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774049.png" /> is an [[Injective module|injective module]].
+
is an exact sequence and if the modules $  Y _ {k} $
 +
are injective for $  0 \leq  k < n $,  
 +
then $  Y _ {n} $
 +
is an [[Injective module|injective module]].
  
 
The following conditions are also equivalent:
 
The following conditions are also equivalent:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774050.png" />;
+
a) $  \mathop{\rm pd} _ {R} ( A) \leq  n $;
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774051.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774052.png" />;
+
b) $  \mathop{\rm Ext} _ {R}  ^ {n+} 1 ( A, C) = 0 $
 +
for all $  C \in {} _ {R} \mathfrak M $;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774053.png" /> is a right-exact functor of the argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774054.png" />;
+
c) $  \mathop{\rm Ext} _ {R}  ^ {n} ( A, C) $
 +
is a right-exact functor of the argument $  C $;
  
 
d) if
 
d) if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774055.png" /></td> </tr></table>
+
$$
 +
0  \rightarrow  X _ {n}  \rightarrow  X _ {n - 1 }  \rightarrow \dots \rightarrow  X _ {0}  \rightarrow  0
 +
$$
  
is an exact sequence and if the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774056.png" /> are projective for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774057.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774058.png" /> is a [[Projective module|projective module]].
+
is an exact sequence and if the modules $  X _ {k} $
 +
are projective for $  0 \leq  k < n $,  
 +
then $  X _ {n} $
 +
is a [[Projective module|projective module]].
  
 
If the sequence
 
If the sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774059.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  ^  \prime  \rightarrow  A  \rightarrow  A  ^ {\prime\prime}  \rightarrow  0
 +
$$
  
is exact, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774060.png" />, and if
+
is exact, where $  A  ^  \prime  , A, A  ^ {\prime\prime} \in {} _ {R} \mathfrak M $,
 +
and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774061.png" /></td> </tr></table>
+
$$
 +
d  ^  \prime  =   \mathop{\rm pd} _ {R} ( A  ^  \prime  ),\ \
 +
=   \mathop{\rm pd} _ {R} ( A),\ \
 +
d  ^ {\prime\prime}  =   \mathop{\rm pd} _ {R} ( A  ^ {\prime\prime} ),
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774062.png" /></td> </tr></table>
+
$$
 +
d  ^  \prime  \leq  \sup  ( d, d  ^ {\prime\prime} - 1),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774063.png" /></td> </tr></table>
+
$$
 +
d  ^ {\prime\prime}  \leq  \sup  ( d  ^  \prime  + 1, d),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774064.png" /></td> </tr></table>
+
$$
 +
d  \leq  \sup  ( d  ^  \prime  , d  ^ {\prime\prime} ).
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774065.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774066.png" />.
+
If $  d < \sup  ( d  ^  \prime  , d  ^ {\prime\prime} ) $,  
 +
then $  d  ^ {\prime\prime} = d  ^  \prime  + 1 $.
  
 
The number
 
The number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774067.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.gl\AAh dim  } ( R)  = \
 +
\sup  \{ { \mathop{\rm pd} _ {R} ( A) } : {A \in {} _ {R} \mathfrak M } \}
 +
$$
  
is called the left global dimension of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774068.png" />.
+
is called the left global dimension of the ring $  R $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774069.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.gl\AAh dim  } ( R) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774070.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sup  \{ { \mathop{\rm pd} _ {R} ( A) } : {A \
 +
\textrm{ is  a  cyclic  "l eft" }  R \textrm{ \AAh module  } } \} =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774071.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sup  \{ { \mathop{\rm id} _ {R} ( A) } : {A \in {} _ {R} \mathfrak M } \} .
 +
$$
  
If the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774072.png" /> has a composition series of left ideals, then
+
If the ring $  R $
 +
has a composition series of left ideals, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774073.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.gl\AAh dim  } ( R) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774074.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sup  \{ { \mathop{\rm pd} ( S) } :
 +
{S \in {} _ {R} \mathfrak M , \
 +
S  \textrm{ is  a  simple  }  R \textrm{ \AAh module  } } \} .
 +
$$
  
 
The number
 
The number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774075.png" /></td> </tr></table>
+
$$
 +
\textrm{ gl\AAh wdim  } ( R)  = \
 +
\sup  \{ { \mathop{\rm wdim} ( A) } : {A \in {} _ {R} \mathfrak M } \}
 +
$$
  
is called the global weak dimension of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774076.png" />, and
+
is called the global weak dimension of the ring $  R $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774077.png" /></td> </tr></table>
+
$$
 +
\textrm{ gl\AAh wdim  } ( R)  = \sup  \{ { \mathop{\rm wdim} _ {R} ( A) } : {
 +
A \in \mathfrak M _ {R} } \}
 +
.
 +
$$
  
 
The number
 
The number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774078.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.f.gl\AAh dim  } ( R)  = \sup  \{ { \mathop{\rm pd} ( A) } : {
 +
A \in \mathfrak M _ {R} ,  \mathop{\rm pd} _ {R} ( A) < \infty } \}
 +
$$
  
is called the left bounded global dimension of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774079.png" />.
+
is called the left bounded global dimension of the ring $  R $.
  
The following dimensions are close to these. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774080.png" /> is an algebra over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774081.png" />, the projective dimension of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774082.png" />-bimodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774083.png" /> (i.e. of the left module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774084.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774085.png" /> is the opposite ring to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774086.png" />) is called the bidimension of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774087.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774088.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774089.png" /> is a group, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774090.png" /> is a commutative ring, then the (co) homological dimension of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774091.png" /> is by definition the flat (projective) dimension of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774092.png" /> over the group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774093.png" /> with the trivial action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774094.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774095.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774096.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774097.png" />.
+
The following dimensions are close to these. If $  R $
 +
is an algebra over a commutative ring $  K $,  
 +
the projective dimension of the $  R $-
 +
bimodule of $  R $(
 +
i.e. of the left module $  R \otimes _ {K} R ^ { \mathop{\rm op} } $,  
 +
where $  R ^ { \mathop{\rm op} } $
 +
is the [[opposite ring]] to $  R $)  
 +
is called the bidimension of the algebra $  R $
 +
and is denoted by $  \mathop{\rm bid}  R $;  
 +
if $  G $
 +
is a group, and $  K $
 +
is a commutative ring, then the (co) homological dimension of the group $  G $
 +
is by definition the flat (projective) dimension of the module $  K $
 +
over the group ring $  KG $
 +
with the trivial action of $  G $
 +
on $  K $
 +
and is denoted by $  (  \mathop{\rm hd} _ {K} ( G)) $
 +
$  \mathop{\rm cd} ( G) $.
  
A number of well-known theorems can be reformulated in terms of the homological dimension. Thus, the [[Wedderburn–Artin theorem|Wedderburn–Artin theorem]] has the following form: A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774098.png" /> is classically simple if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774099.png" />. A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740100.png" /> is regular in the sense of von Neumann if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740101.png" />. The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740102.png" /> for an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740103.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740104.png" /> is equivalent to its separability over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740105.png" />. The statement that a subgroup of a free Abelian group is free is equivalent to saying that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740106.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740107.png" /> is the ring of integers. A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740108.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740109.png" /> is called a left hereditary ring.
+
A number of well-known theorems can be reformulated in terms of the homological dimension. Thus, the [[Wedderburn–Artin theorem|Wedderburn–Artin theorem]] has the following form: A ring $  R $
 +
is classically simple if and only if $  \textrm{ gl\AAh dim  } ( R) = 0 $.  
 +
A ring $  R $
 +
is regular in the sense of von Neumann if and only if $  \textrm{ gl\AAh wdim  } ( R) = 0 $.  
 +
The equality $  \mathop{\rm bid} _ {K} R = 0 $
 +
for an algebra $  R $
 +
over a field $  K $
 +
is equivalent to its separability over $  K $.  
 +
The statement that a subgroup of a free Abelian group is free is equivalent to saying that $  \textrm{ gl\AAh dim  } ( \mathbf Z ) = 1 $,  
 +
where $  \mathbf Z $
 +
is the ring of integers. A ring $  R $
 +
for which $  \textrm{ l.gl\AAh dim  } ( R) \leq  1 $
 +
is called a left hereditary ring.
  
The left and right global dimensions of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740110.png" /> need not coincide. If, on the other hand, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740111.png" /> is both left and right Noetherian, then
+
The left and right global dimensions of a ring $  R $
 +
need not coincide. If, on the other hand, $  R $
 +
is both left and right Noetherian, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.gl\AAh dim  } ( R)  = \textrm{ r.gl\AAh wdim  } ( R)  = \
 +
\textrm{ gl\AAh wdim  } ( R).
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740113.png" /> is a ring homomorphism, then any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740114.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740115.png" /> can also be regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740116.png" />-module, and
+
If $  R \rightarrow S $
 +
is a ring homomorphism, then any $  S $-
 +
module $  {} _ {S} ( A) $
 +
can also be regarded as an $  R $-
 +
module, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740117.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm pd} _ {R} ( A)  \leq  \
 +
\mathop{\rm pd} _ {S} ( A) +  \mathop{\rm pd} _ {R} ( S),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740118.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm wdim} _ {R} ( A)  \leq    \mathop{\rm wdim} _ {S} ( A) +  \mathop{\rm wdim} _ {R} ({} _ {R} S),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740119.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm id} _ {R} ( A)  \leq    \mathop{\rm id} _ {S} ( A) +  \mathop{\rm wdim} _ {R} ( S _ {R} ).
 +
$$
  
If the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740120.png" /> is filtered, then
+
If the ring $  R $
 +
is filtered, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740121.png" /></td> </tr></table>
+
$$
 +
\textrm{ l.gl\AAh dim  } ( R)  \leq  \textrm{ l.gr.gl\AAh dim  }  G ( R),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740122.png" /> is the associated graded ring.
+
where $  G( R) $
 +
is the associated graded ring.
  
 
In several cases the study of homological dimensions is related to the cardinality of the modules under consideration. This makes it possible, in particular, to estimate the difference between the weak and projective dimensions of a module, and also between the left and right global dimensions of the ring. The [[Continuum hypothesis|continuum hypothesis]] is equivalent to
 
In several cases the study of homological dimensions is related to the cardinality of the modules under consideration. This makes it possible, in particular, to estimate the difference between the weak and projective dimensions of a module, and also between the left and right global dimensions of the ring. The [[Continuum hypothesis|continuum hypothesis]] is equivalent to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740123.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm pd} _ {\mathbf R [ x, y, z] }  ( \mathbf R ( x, y, z))  = 2,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740124.png" /> is the field of real numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740125.png" /> is the field of rational functions and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740126.png" /> is the ring of polynomials over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740127.png" />.
+
where $  \mathbf R $
 +
is the field of real numbers, $  \mathbf R ( x, y, z) $
 +
is the field of rational functions and $  \mathbf R [ x, y, z] $
 +
is the ring of polynomials over $  \mathbf R $.
  
The majority of studies on homological dimensions is concerned with discovering relations between these dimensions and other characteristics of modules and fields. Thus, according to Hilbert's syzygies theorem (cf. [[Hilbert theorem|Hilbert theorem]]),
+
The majority of studies on homological dimensions is concerned with discovering relations between these dimensions and other characteristics of modules and fields. Thus, according to the [[Hilbert syzygy theorem]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740128.png" /></td> </tr></table>
+
$$
 +
\textrm{ gl\AAh dim  }  K [ x _ {1} \dots x _ {n} ]  = n,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740129.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740130.png" /> is the ring of polynomials in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740131.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740132.png" />. By now this theorem has been considerably generalized. The homological dimension of group algebras of solvable groups is closely connected with the length of the solvable series of the group and with the ranks of its factors. The equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740133.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740134.png" /> is a free group (Stallings' theorem). Another subject studied are the connections between homological dimensions and other dimensions of modules and rings. E.g., the Krull dimension of a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740135.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740136.png" /> if and only if all localizations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740137.png" /> by prime ideals have finite Krull dimension. Any commutative Noetherian ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740138.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740139.png" /> is decomposable into a finite direct sum of integral domains. The local ring of a regular point is called a regular local ring in algebraic geometry. The global dimension of such a ring is identical with its Krull dimension, and also with the minimal number of generators of its maximal ideal (regular local rings are integral domains with unique prime factorization; they remain regular after localization at prime ideals).
+
where $  K $
 +
is a field and $  K[ x _ {1} \dots x _ {n} ] $
 +
is the ring of polynomials in the variables $  x _ {1} \dots x _ {n} $
 +
over $  K $.  
 +
By now this theorem has been considerably generalized. The homological dimension of group algebras of solvable groups is closely connected with the length of the solvable series of the group and with the ranks of its factors. The equation $  \mathop{\rm cd} ( R) = 1 $
 +
implies that $  G $
 +
is a free group (Stallings' theorem). Another subject studied are the connections between homological dimensions and other dimensions of modules and rings. E.g., the Krull dimension of a commutative ring $  R $
 +
coincides with $  \textrm{ gl\AAh dim  } ( R) $
 +
if and only if all localizations of $  R $
 +
by prime ideals have finite Krull dimension. Any commutative Noetherian ring $  R $
 +
for which $  \textrm{ gl\AAh dim  } ( R) < \infty $
 +
is decomposable into a finite direct sum of integral domains. The local ring of a regular point is called a regular local ring in algebraic geometry. The global dimension of such a ring is identical with its Krull dimension, and also with the minimal number of generators of its maximal ideal (regular local rings are integral domains with unique prime factorization; they remain regular after localization at prime ideals).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. Osofsky, "Homological dimensions of modules" , Amer. Math. Soc. (1973) {{MR|0447210}} {{ZBL|0254.13015}} </TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. Osofsky, "Homological dimensions of modules" , Amer. Math. Soc. (1973) {{MR|0447210}} {{ZBL|0254.13015}} </TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====
Line 138: Line 318:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Năstăsecu, F. van Oystaeyen, "Dimensions of rings" , Reidel (1988)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Năstăsecu, F. van Oystaeyen, "Dimensions of rings" , Reidel (1988)</TD></TR>
 +
</table>

Latest revision as of 22:10, 5 June 2020


A numerical characteristic of an object in a category with respect to a certain specified class of objects in this category. The categories of modules over a ring form the principal range of application of this concept.

Let $ \mathfrak B $ be a fixed class of objects in an Abelian category $ \mathfrak A $, and let $ A $ be an object in $ \mathfrak A $. The (projective) homological dimension of $ A $ with respect to $ \mathfrak B $ is then defined as the least number $ n $ for which there exists an exact sequence of the form

$$ 0 \rightarrow B _ {n} \rightarrow B _ {n - 1 } \rightarrow \dots \rightarrow B _ {0} \rightarrow A \rightarrow 0, $$

where all $ B _ {i} $ are from $ \mathfrak B $. If such an $ n $ does not exist, one says that the homological dimension of $ A $ is equal to $ \infty $.

Let $ {} _ {R} \mathfrak M $( respectively, $ \mathfrak M _ {R} $) be the category of left (respectively, right) modules over an associative ring $ R $ with a unit element. Then: a) if $ \mathfrak B $ is the class of all projective left $ R $- modules, then the corresponding homological dimension of $ A $ is also called the projective dimension and is denoted by $ \mathop{\rm pd} _ {R} ( A) $; b) if $ \mathfrak B $ is the class of all flat left $ R $- modules, then the corresponding homological dimension of $ A $ is called the weak dimension and is denoted by $ \mathop{\rm wdim} _ {R} ( A) $. If $ \mathfrak A $ is the category of left graded modules (cf. Graded module) over a graded ring $ R $ and $ \mathfrak B $ is the class of all left projective graded $ R $- modules, then the corresponding homological dimension of a graded $ R $- module $ A $ is called the graded projective dimension and is denoted by $ \textrm{ gr\AAh d } _ {R} ( A) $.

A dual construction may also be considered. If $ A \in {} _ {R} \mathfrak M $, then the least number $ n $ such that there exists an exact sequence

$$ 0 \rightarrow A \rightarrow Q _ {0} \rightarrow Q _ {1} \rightarrow \dots \rightarrow Q _ {n} \rightarrow 0, $$

where all the modules $ Q _ {i} $ are injective, is said to be the injective dimension of $ A $ and is denoted by $ \mathop{\rm id} _ {R} ( A) $.

For $ A \in {} _ {R} \mathfrak M $ the following conditions are equivalent:

a) $ \mathop{\rm id} _ {R} ( A) \leq n $;

b) $ \mathop{\rm Ext} _ {R} ^ {n+} 1 ( B, A) = 0 $ for all $ B \in {} _ {R} \mathfrak M $( cf. Functor Ext);

b') $ \mathop{\rm Ext} _ {R} ^ {n+} 1 ( B, A) = 0 $ for all cyclic modules $ B $;

c) $ \mathop{\rm Ext} _ {R} ^ {n} ( B, A) $ is a right-exact functor of the argument $ B $;

d) if

$$ 0 \rightarrow A \rightarrow Y _ {0} \rightarrow \dots \rightarrow Y _ {n - 1 } \rightarrow Y _ {n} \rightarrow \ 0 $$

is an exact sequence and if the modules $ Y _ {k} $ are injective for $ 0 \leq k < n $, then $ Y _ {n} $ is an injective module.

The following conditions are also equivalent:

a) $ \mathop{\rm pd} _ {R} ( A) \leq n $;

b) $ \mathop{\rm Ext} _ {R} ^ {n+} 1 ( A, C) = 0 $ for all $ C \in {} _ {R} \mathfrak M $;

c) $ \mathop{\rm Ext} _ {R} ^ {n} ( A, C) $ is a right-exact functor of the argument $ C $;

d) if

$$ 0 \rightarrow X _ {n} \rightarrow X _ {n - 1 } \rightarrow \dots \rightarrow X _ {0} \rightarrow 0 $$

is an exact sequence and if the modules $ X _ {k} $ are projective for $ 0 \leq k < n $, then $ X _ {n} $ is a projective module.

If the sequence

$$ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0 $$

is exact, where $ A ^ \prime , A, A ^ {\prime\prime} \in {} _ {R} \mathfrak M $, and if

$$ d ^ \prime = \mathop{\rm pd} _ {R} ( A ^ \prime ),\ \ d = \mathop{\rm pd} _ {R} ( A),\ \ d ^ {\prime\prime} = \mathop{\rm pd} _ {R} ( A ^ {\prime\prime} ), $$

then

$$ d ^ \prime \leq \sup ( d, d ^ {\prime\prime} - 1), $$

$$ d ^ {\prime\prime} \leq \sup ( d ^ \prime + 1, d), $$

$$ d \leq \sup ( d ^ \prime , d ^ {\prime\prime} ). $$

If $ d < \sup ( d ^ \prime , d ^ {\prime\prime} ) $, then $ d ^ {\prime\prime} = d ^ \prime + 1 $.

The number

$$ \textrm{ l.gl\AAh dim } ( R) = \ \sup \{ { \mathop{\rm pd} _ {R} ( A) } : {A \in {} _ {R} \mathfrak M } \} $$

is called the left global dimension of the ring $ R $.

$$ \textrm{ l.gl\AAh dim } ( R) = $$

$$ = \ \sup \{ { \mathop{\rm pd} _ {R} ( A) } : {A \ \textrm{ is a cyclic "l eft" } R \textrm{ \AAh module } } \} = $$

$$ = \ \sup \{ { \mathop{\rm id} _ {R} ( A) } : {A \in {} _ {R} \mathfrak M } \} . $$

If the ring $ R $ has a composition series of left ideals, then

$$ \textrm{ l.gl\AAh dim } ( R) = $$

$$ = \ \sup \{ { \mathop{\rm pd} ( S) } : {S \in {} _ {R} \mathfrak M , \ S \textrm{ is a simple } R \textrm{ \AAh module } } \} . $$

The number

$$ \textrm{ gl\AAh wdim } ( R) = \ \sup \{ { \mathop{\rm wdim} ( A) } : {A \in {} _ {R} \mathfrak M } \} $$

is called the global weak dimension of the ring $ R $, and

$$ \textrm{ gl\AAh wdim } ( R) = \sup \{ { \mathop{\rm wdim} _ {R} ( A) } : { A \in \mathfrak M _ {R} } \} . $$

The number

$$ \textrm{ l.f.gl\AAh dim } ( R) = \sup \{ { \mathop{\rm pd} ( A) } : { A \in \mathfrak M _ {R} , \mathop{\rm pd} _ {R} ( A) < \infty } \} $$

is called the left bounded global dimension of the ring $ R $.

The following dimensions are close to these. If $ R $ is an algebra over a commutative ring $ K $, the projective dimension of the $ R $- bimodule of $ R $( i.e. of the left module $ R \otimes _ {K} R ^ { \mathop{\rm op} } $, where $ R ^ { \mathop{\rm op} } $ is the opposite ring to $ R $) is called the bidimension of the algebra $ R $ and is denoted by $ \mathop{\rm bid} R $; if $ G $ is a group, and $ K $ is a commutative ring, then the (co) homological dimension of the group $ G $ is by definition the flat (projective) dimension of the module $ K $ over the group ring $ KG $ with the trivial action of $ G $ on $ K $ and is denoted by $ ( \mathop{\rm hd} _ {K} ( G)) $ $ \mathop{\rm cd} ( G) $.

A number of well-known theorems can be reformulated in terms of the homological dimension. Thus, the Wedderburn–Artin theorem has the following form: A ring $ R $ is classically simple if and only if $ \textrm{ gl\AAh dim } ( R) = 0 $. A ring $ R $ is regular in the sense of von Neumann if and only if $ \textrm{ gl\AAh wdim } ( R) = 0 $. The equality $ \mathop{\rm bid} _ {K} R = 0 $ for an algebra $ R $ over a field $ K $ is equivalent to its separability over $ K $. The statement that a subgroup of a free Abelian group is free is equivalent to saying that $ \textrm{ gl\AAh dim } ( \mathbf Z ) = 1 $, where $ \mathbf Z $ is the ring of integers. A ring $ R $ for which $ \textrm{ l.gl\AAh dim } ( R) \leq 1 $ is called a left hereditary ring.

The left and right global dimensions of a ring $ R $ need not coincide. If, on the other hand, $ R $ is both left and right Noetherian, then

$$ \textrm{ l.gl\AAh dim } ( R) = \textrm{ r.gl\AAh wdim } ( R) = \ \textrm{ gl\AAh wdim } ( R). $$

If $ R \rightarrow S $ is a ring homomorphism, then any $ S $- module $ {} _ {S} ( A) $ can also be regarded as an $ R $- module, and

$$ \mathop{\rm pd} _ {R} ( A) \leq \ \mathop{\rm pd} _ {S} ( A) + \mathop{\rm pd} _ {R} ( S), $$

$$ \mathop{\rm wdim} _ {R} ( A) \leq \mathop{\rm wdim} _ {S} ( A) + \mathop{\rm wdim} _ {R} ({} _ {R} S), $$

$$ \mathop{\rm id} _ {R} ( A) \leq \mathop{\rm id} _ {S} ( A) + \mathop{\rm wdim} _ {R} ( S _ {R} ). $$

If the ring $ R $ is filtered, then

$$ \textrm{ l.gl\AAh dim } ( R) \leq \textrm{ l.gr.gl\AAh dim } G ( R), $$

where $ G( R) $ is the associated graded ring.

In several cases the study of homological dimensions is related to the cardinality of the modules under consideration. This makes it possible, in particular, to estimate the difference between the weak and projective dimensions of a module, and also between the left and right global dimensions of the ring. The continuum hypothesis is equivalent to

$$ \mathop{\rm pd} _ {\mathbf R [ x, y, z] } ( \mathbf R ( x, y, z)) = 2, $$

where $ \mathbf R $ is the field of real numbers, $ \mathbf R ( x, y, z) $ is the field of rational functions and $ \mathbf R [ x, y, z] $ is the ring of polynomials over $ \mathbf R $.

The majority of studies on homological dimensions is concerned with discovering relations between these dimensions and other characteristics of modules and fields. Thus, according to the Hilbert syzygy theorem,

$$ \textrm{ gl\AAh dim } K [ x _ {1} \dots x _ {n} ] = n, $$

where $ K $ is a field and $ K[ x _ {1} \dots x _ {n} ] $ is the ring of polynomials in the variables $ x _ {1} \dots x _ {n} $ over $ K $. By now this theorem has been considerably generalized. The homological dimension of group algebras of solvable groups is closely connected with the length of the solvable series of the group and with the ranks of its factors. The equation $ \mathop{\rm cd} ( R) = 1 $ implies that $ G $ is a free group (Stallings' theorem). Another subject studied are the connections between homological dimensions and other dimensions of modules and rings. E.g., the Krull dimension of a commutative ring $ R $ coincides with $ \textrm{ gl\AAh dim } ( R) $ if and only if all localizations of $ R $ by prime ideals have finite Krull dimension. Any commutative Noetherian ring $ R $ for which $ \textrm{ gl\AAh dim } ( R) < \infty $ is decomposable into a finite direct sum of integral domains. The local ring of a regular point is called a regular local ring in algebraic geometry. The global dimension of such a ring is identical with its Krull dimension, and also with the minimal number of generators of its maximal ideal (regular local rings are integral domains with unique prime factorization; they remain regular after localization at prime ideals).

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305
[2] B.L. Osofsky, "Homological dimensions of modules" , Amer. Math. Soc. (1973) MR0447210 Zbl 0254.13015

Comments

For other dimensions of rings see (the editorial comments to) Dimension. Other notations for the projective and injective dimensions include projdim, pdim, injdim, idim.

References

[a1] C. Năstăsecu, F. van Oystaeyen, "Dimensions of rings" , Reidel (1988)
How to Cite This Entry:
Homological dimension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homological_dimension&oldid=23859
This article was adapted from an original article by V.E. GovorovA.V. Mikhalev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article