Namespaces
Variants
Actions

Difference between revisions of "Clifford theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(gather refs)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A theorem establishing an inequality between the degree and the dimension of a special divisor on an algebraic curve. It was proved by W. Clifford.
+
{{TEX|done}}{{MSC|14H51}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224901.png" /> be a smooth projective curve over an algebraically closed field, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224902.png" /> be a divisor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224903.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224904.png" /> be the degree and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224905.png" /> the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224906.png" />. A positive divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224907.png" /> is called special if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224908.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c0224909.png" /> is the canonical divisor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249010.png" />. Clifford's theorem states: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249011.png" /> for any special divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249012.png" />, with equality if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249013.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249014.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249015.png" /> is a hyper-elliptic curve and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249016.png" /> is a multiple of the unique special divisor of degree 2 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249017.png" />. An equivalent statement of Clifford's theorem is: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249019.png" /> is the linear system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249020.png" />. It follows from Clifford's theorem that the above inequality holds for any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249021.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249022.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249024.png" /> is the genus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022490/c02249025.png" />.
+
A theorem establishing an inequality between the degree and the dimension of a special divisor on an [[algebraic curve]]. It was proved by W. Clifford.
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.J. Walker, "Algebraic curves" , Springer (1978) {{MR|0513824}} {{ZBL|0399.14016}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
  
 +
Let $X$ be a smooth projective curve over an algebraically closed field, and let $D$ be a divisor on $X$ (cf. [[Divisor (algebraic geometry)]]). Let $\deg D$ be the degree and $l(D)$ the dimension of $D$. A positive divisor $D$ is called ''special'' if $l(K-D)>0$, where $K$ is the canonical divisor on $X$. Clifford's theorem states: $\deg D\geq2l(D)-2$ for any special divisor $D$, with equality if $D=0$ or $D=K$ or if $X$ is a hyper-elliptic curve and $D$ is a multiple of the unique special divisor of degree 2 on $X$. An equivalent statement of Clifford's theorem is: $\dim|D|\leq(\deg D)/2$, where $|D|$ is the [[linear system]] of $D$. It follows from Clifford's theorem that the above inequality holds for any divisor $D$ on $X$ for which $0\leq\deg D\leq2g-2$, where $g=l(K)$ is the genus of $X$ (cf. [[Genus of a curve]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , '''1''' , Springer (1985) {{MR|0770932}} {{ZBL|0559.14017}} </TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> R.J. Walker, "Algebraic curves" , Springer (1978) {{MR|0513824}} {{ZBL|0399.14016}} </TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , '''1''' , Springer (1985) {{MR|0770932}} {{ZBL|0559.14017}} </TD></TR>
 +
</table>

Latest revision as of 05:40, 9 April 2023

2020 Mathematics Subject Classification: Primary: 14H51 [MSN][ZBL]

A theorem establishing an inequality between the degree and the dimension of a special divisor on an algebraic curve. It was proved by W. Clifford.

Let $X$ be a smooth projective curve over an algebraically closed field, and let $D$ be a divisor on $X$ (cf. Divisor (algebraic geometry)). Let $\deg D$ be the degree and $l(D)$ the dimension of $D$. A positive divisor $D$ is called special if $l(K-D)>0$, where $K$ is the canonical divisor on $X$. Clifford's theorem states: $\deg D\geq2l(D)-2$ for any special divisor $D$, with equality if $D=0$ or $D=K$ or if $X$ is a hyper-elliptic curve and $D$ is a multiple of the unique special divisor of degree 2 on $X$. An equivalent statement of Clifford's theorem is: $\dim|D|\leq(\deg D)/2$, where $|D|$ is the linear system of $D$. It follows from Clifford's theorem that the above inequality holds for any divisor $D$ on $X$ for which $0\leq\deg D\leq2g-2$, where $g=l(K)$ is the genus of $X$ (cf. Genus of a curve).

References

[1] R.J. Walker, "Algebraic curves" , Springer (1978) MR0513824 Zbl 0399.14016
[2] N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)
[3] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[4] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001
[a1] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[a2] E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , 1 , Springer (1985) MR0770932 Zbl 0559.14017
How to Cite This Entry:
Clifford theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Clifford_theorem&oldid=23784
This article was adapted from an original article by V.A. Iskovskikh (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article