Difference between revisions of "Markov property"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | ''for a real-valued [[Stochastic process|stochastic process]] | + | <!-- |
+ | m0625101.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/M062/M.0602510 Markov property | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''for a real-valued [[Stochastic process|stochastic process]] $ X ( t) $, | ||
+ | $ t \in T \subset \mathbf R $'' | ||
{{MSC|60Jxx}} | {{MSC|60Jxx}} | ||
Line 5: | Line 18: | ||
[[Category:Markov processes]] | [[Category:Markov processes]] | ||
− | The property that for any set < | + | The property that for any set $ t _ {1} < \dots < t _ {n+1} $ of times from $ T $ and any Borel set $ B $, |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | $$ \tag{* } | |
− | + | {\mathsf P} \{ X ( t _ {n+1} ) \in B \mid X ( t _ {n} ) \dots X ( t _ {1} ) \} = | |
+ | $$ | ||
+ | $$ | ||
+ | = \ | ||
+ | {\mathsf P} \{ X ( t _ {n+1} ) \in B \mid X ( t _ {n} ) \} | ||
+ | $$ | ||
+ | with probability 1, that is, the conditional probability distribution of $ X ( t _ {n+1} ) $ | ||
+ | given $ X ( t _ {n} ) \dots X ( t _ {1} ) $ | ||
+ | coincides (almost certainly) with the conditional distribution of $ X ( t _ {n+1} ) $ | ||
+ | given $ X ( t _ {n} ) $. | ||
+ | This can be interpreted as independence of the "future" $ X ( t _ {n+1} ) $ | ||
+ | and the "past" $ ( X ( t _ {n-1} ) \dots X ( t _ {1} ) ) $ | ||
+ | given the fixed "present" $ X ( t _ {n} ) $. | ||
+ | Stochastic processes satisfying the property (*) are called Markov processes (cf. [[Markov process|Markov process]]). The Markov property has (under certain additional assumptions) a stronger version, known as the "strong Markov property" . In discrete time $ T = \{ 1 , 2 ,\dots \} $ | ||
+ | the strong Markov property, which is always true for (Markov) sequences satisfying (*), means that for each stopping time $ \tau $( | ||
+ | relative to the family of $ \sigma $- | ||
+ | algebras $ ( F _ {n} , n \geq 1) $, | ||
+ | $ F _ {n} = \sigma \{ \omega : {X ( 1) \dots X ( n) } \} $), | ||
+ | with probability one | ||
− | = | + | $$ |
+ | {\mathsf P} \{ X ( \tau + 1 ) \in B \mid X ( \tau ) \dots X ( 1) \} = | ||
+ | $$ | ||
+ | $$ | ||
+ | = \ | ||
+ | {\mathsf P} \{ X ( \tau + 1 ) \in B \mid X ( \tau ) \} . | ||
+ | $$ | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|GS}}|| I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|C}}|| K.L. Chung, "Markov chains with stationary transition probabilities" , Springer (1960) {{MR|0116388}} {{ZBL|0092.34304}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Do}}|| J.L. Doob, "Stochastic processes" , Wiley (1953) {{MR|1570654}} {{MR|0058896}} {{ZBL|0053.26802}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Dy}}|| E.B. Dynkin, "Markov processes" , '''1''' , Springer (1965) (Translated from Russian) {{MR|0193671}} {{ZBL|0132.37901}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|K}}|| T.G. Kurtz, "Markov processes" , Wiley (1986) {{MR|0838085}} {{ZBL|0592.60049}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|F}}|| W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''1–2''' , Wiley (1966) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Le}}|| P. Lévy, "Processus stochastiques et mouvement Brownien" , Gauthier-Villars (1965) {{MR|0190953}} {{ZBL|0137.11602}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Lo}}|| M. Loève, "Probability theory" , '''II''' , Springer (1978) {{MR|0651017}} {{MR|0651018}} {{ZBL|0385.60001}} | ||
+ | |} |
Latest revision as of 19:53, 1 November 2023
for a real-valued stochastic process $ X ( t) $,
$ t \in T \subset \mathbf R $
2020 Mathematics Subject Classification: Primary: 60Jxx [MSN][ZBL]
The property that for any set $ t _ {1} < \dots < t _ {n+1} $ of times from $ T $ and any Borel set $ B $,
$$ \tag{* } {\mathsf P} \{ X ( t _ {n+1} ) \in B \mid X ( t _ {n} ) \dots X ( t _ {1} ) \} = $$
$$ = \ {\mathsf P} \{ X ( t _ {n+1} ) \in B \mid X ( t _ {n} ) \} $$
with probability 1, that is, the conditional probability distribution of $ X ( t _ {n+1} ) $ given $ X ( t _ {n} ) \dots X ( t _ {1} ) $ coincides (almost certainly) with the conditional distribution of $ X ( t _ {n+1} ) $ given $ X ( t _ {n} ) $. This can be interpreted as independence of the "future" $ X ( t _ {n+1} ) $ and the "past" $ ( X ( t _ {n-1} ) \dots X ( t _ {1} ) ) $ given the fixed "present" $ X ( t _ {n} ) $. Stochastic processes satisfying the property (*) are called Markov processes (cf. Markov process). The Markov property has (under certain additional assumptions) a stronger version, known as the "strong Markov property" . In discrete time $ T = \{ 1 , 2 ,\dots \} $ the strong Markov property, which is always true for (Markov) sequences satisfying (*), means that for each stopping time $ \tau $( relative to the family of $ \sigma $- algebras $ ( F _ {n} , n \geq 1) $, $ F _ {n} = \sigma \{ \omega : {X ( 1) \dots X ( n) } \} $), with probability one
$$ {\mathsf P} \{ X ( \tau + 1 ) \in B \mid X ( \tau ) \dots X ( 1) \} = $$
$$ = \ {\mathsf P} \{ X ( \tau + 1 ) \in B \mid X ( \tau ) \} . $$
References
[GS] | I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027 |
[C] | K.L. Chung, "Markov chains with stationary transition probabilities" , Springer (1960) MR0116388 Zbl 0092.34304 |
[Do] | J.L. Doob, "Stochastic processes" , Wiley (1953) MR1570654 MR0058896 Zbl 0053.26802 |
[Dy] | E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) MR0193671 Zbl 0132.37901 |
[K] | T.G. Kurtz, "Markov processes" , Wiley (1986) MR0838085 Zbl 0592.60049 |
[F] | W. Feller, "An introduction to probability theory and its applications", 1–2 , Wiley (1966) |
[Le] | P. Lévy, "Processus stochastiques et mouvement Brownien" , Gauthier-Villars (1965) MR0190953 Zbl 0137.11602 |
[Lo] | M. Loève, "Probability theory" , II , Springer (1978) MR0651017 MR0651018 Zbl 0385.60001 |
Markov property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_property&oldid=23628