Difference between revisions of "Kolmogorov-Seliverstov theorem"
Ulf Rehmann (talk | contribs) m (moved Kolmogorov–Seliverstov theorem to Kolmogorov-Seliverstov theorem: ascii title) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
If the condition | If the condition | ||
− | + | $$\sum_{n=1}^\infty(a_n^2+b_n^2)W(n)<\infty$$ | |
− | holds with | + | holds with $W(n)=\log n$, then the Fourier series |
− | + | $$\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)$$ | |
− | converges almost-everywhere. This was established by A.N. Kolmogorov and G.A. Seliverstov (see [[#References|[1]]], [[#References|[2]]]). In [[#References|[1]]] it was actually proved that | + | converges almost-everywhere. This was established by A.N. Kolmogorov and G.A. Seliverstov (see [[#References|[1]]], [[#References|[2]]]). In [[#References|[1]]] it was actually proved that $W(n)$ can be taken to be $\log^{1+\delta}n$ for any $\delta>0$, and this statement was strengthened in [[#References|[2]]], where its validity was proved for $\delta=0$ as well. This strong form was also obtained by A.I. Plessner [[#References|[3]]]. Prior to the Kolmogorov–Seliverstov theorem, the theorem (G.H. Hardy, 1916) was known with $W(n)=\log^2 n$. The Kolmogorov–Seliverstov theorem remained the strongest result in this direction until 1966, when the [[Carleson theorem|Carleson theorem]] was proved, according to which one can take $W(n)=1$. S. Kaczmarz [[#References|[4]]] transferred the Kolmogorov–Seliverstov theorem from the trigonometric system to arbitrary orthonormal systems by proving that for the almost-everywhere convergence of series in such systems on some set, one can take for $W(n)$ a monotone majorant of the [[Lebesgue function|Lebesgue function]] on this set. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" ''C.R. Acad. Sci. Paris'' , '''178''' (1924) pp. 303–306</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" ''Atti Accad. Naz. Lincei'' , '''3''' (1926) pp. 307–310</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Plessner, "Ueber Konvergenz von trigonometrischen Reihen" ''J. Reine Angew. Math.'' , '''155''' (1925) pp. 15–25</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kaczmarz, "Sur la convergence et la sommabilité des développements orthogonaux" ''Studia Math.'' , '''1''' : 1 (1929) pp. 87–121</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" ''C.R. Acad. Sci. Paris'' , '''178''' (1924) pp. 303–306</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" ''Atti Accad. Naz. Lincei'' , '''3''' (1926) pp. 307–310</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Plessner, "Ueber Konvergenz von trigonometrischen Reihen" ''J. Reine Angew. Math.'' , '''155''' (1925) pp. 15–25</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kaczmarz, "Sur la convergence et la sommabilité des développements orthogonaux" ''Studia Math.'' , '''1''' : 1 (1929) pp. 87–121</TD></TR></table> |
Latest revision as of 09:07, 27 July 2014
If the condition
$$\sum_{n=1}^\infty(a_n^2+b_n^2)W(n)<\infty$$
holds with $W(n)=\log n$, then the Fourier series
$$\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)$$
converges almost-everywhere. This was established by A.N. Kolmogorov and G.A. Seliverstov (see [1], [2]). In [1] it was actually proved that $W(n)$ can be taken to be $\log^{1+\delta}n$ for any $\delta>0$, and this statement was strengthened in [2], where its validity was proved for $\delta=0$ as well. This strong form was also obtained by A.I. Plessner [3]. Prior to the Kolmogorov–Seliverstov theorem, the theorem (G.H. Hardy, 1916) was known with $W(n)=\log^2 n$. The Kolmogorov–Seliverstov theorem remained the strongest result in this direction until 1966, when the Carleson theorem was proved, according to which one can take $W(n)=1$. S. Kaczmarz [4] transferred the Kolmogorov–Seliverstov theorem from the trigonometric system to arbitrary orthonormal systems by proving that for the almost-everywhere convergence of series in such systems on some set, one can take for $W(n)$ a monotone majorant of the Lebesgue function on this set.
References
[1] | A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" C.R. Acad. Sci. Paris , 178 (1924) pp. 303–306 |
[2] | A.N. Kolmogorov, G.A. Seliverstov, "Sur la convergence des séries de Fourier" Atti Accad. Naz. Lincei , 3 (1926) pp. 307–310 |
[3] | A.I. Plessner, "Ueber Konvergenz von trigonometrischen Reihen" J. Reine Angew. Math. , 155 (1925) pp. 15–25 |
[4] | S. Kaczmarz, "Sur la convergence et la sommabilité des développements orthogonaux" Studia Math. , 1 : 1 (1929) pp. 87–121 |
Kolmogorov-Seliverstov theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kolmogorov-Seliverstov_theorem&oldid=22657