Namespaces
Variants
Actions

Difference between revisions of "Kervaire-Milnor invariant"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fixing subscripts)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
An invariant of framed [[Surgery|surgery]] of a closed 6- or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553601.png" />-dimensional framed manifold.
+
<!--
 +
k0553601.png
 +
$#A+1 = 47 n = 0
 +
$#C+1 = 47 : ~/encyclopedia/old_files/data/K055/K.0505360 Kervaire\ANDMilnor invariant
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553602.png" /> be a stably-parallelizable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553603.png" />-connected manifold on which is given a stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553605.png" />-dimensional framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553606.png" />, i.e. a trivialization of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553607.png" />-dimensional [[Normal bundle|normal bundle]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553608.png" /> be spheres realizing a basis of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553609.png" />-dimensional homology space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536010.png" />. By summing the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536011.png" />-trivialization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536012.png" /> with certain trivializations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536013.png" /> of tubular neighbourhoods of the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536015.png" />, one obtains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536016.png" />-dimensional trivialization of the stable normal bundles to the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536017.png" /> and the corresponding elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536018.png" />. The cokernel of the stable homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536019.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536020.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536021.png" />, so that each sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536022.png" /> is put into correspondence with an element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536023.png" /> (according to the value of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536024.png" /> which they take in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536025.png" /> after factorization by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536026.png" />). This value does not depend on the choice of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536027.png" />, but depends only on the homology classes realized by the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536028.png" /> and the framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536029.png" />. The [[Arf-invariant|Arf-invariant]] of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536030.png" /> so obtained satisfies the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536031.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536033.png" /> is the intersection form of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536034.png" />-dimensional homology space on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536035.png" />, and is called the Kervaire–Milnor invariant of this manifold with framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536036.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536037.png" /> has a framed surgery to the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536038.png" /> if and only if the Kervaire–Milnor invariant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536039.png" /> is zero.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Similar constructions have been carried out for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536040.png" />. The Kervaire–Milnor invariant in dimension six is the only invariant of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536041.png" />-dimensional framed cobordism and defines an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536043.png" />. However, in dimension fourteen it is not a unique invariant of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536044.png" />-dimensional framed cobordism, i.e. the stable group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536046.png" />, is defined by framings on the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536047.png" /> and on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536048.png" />.
+
An invariant of framed [[Surgery|surgery]] of a closed 6- or 14-dimensional framed manifold.
 +
 
 +
Let  $  M  ^ {6} $
 +
be a stably-parallelizable  2-connected manifold on which is given a stable  $  N $-dimensional framing  $  ( M  ^ {6} , U ) $,
 +
i.e. a trivialization of the stable  $  N $-dimensional [[Normal bundle|normal bundle]]. Let  $  S _ {i}  ^ {3} $
 +
be spheres realizing a basis of the  3-dimensional homology space of  $  M  ^ {6} $.
 +
By summing the given  $  N $-trivialization  $  U $
 +
with certain trivializations  $  \alpha _ {i} \in \pi _ {3} (  \mathop{\rm SO} _ {3} ) $
 +
of tubular neighbourhoods of the spheres  $  S _ {i}  ^ {3} $
 +
in  $  M  ^ {6} $,
 +
one obtains an  $  ( N + 3 ) $-dimensional trivialization of the stable normal bundles to the spheres  $  S _ {i}  ^ {3} $
 +
and the corresponding elements  $  \alpha _ {i}  ^ {1} \in \pi _ {3} (  \mathop{\rm SO} _ {N+ 3} ) $.
 +
The cokernel of the stable homomorphism  $  s :  \pi _ {n} (  \mathop{\rm SO} _ {N+ 3} ) \rightarrow \pi _ {n} (  \mathop{\rm SO} _ {N+ n} ) $
 +
is isomorphic to  $  \mathbf Z _ {2} $
 +
for  $  n = 3 $,
 +
so that each sphere  $  S _ {i}  ^ {3} $
 +
is put into correspondence with an element of the group  $  \pi _ {3} (  \mathop{\rm SO} _ {N+ 3} ) /  \mathop{\rm Im}  s $ (according to the value of the elements  $  \alpha _ {i}  ^ {1} $
 +
which they take in the group  $  \mathbf Z _ {2} $
 +
after factorization by  $  \alpha _ {i}  ^ {1} $).
 +
This value does not depend on the choice of the elements  $  \alpha _ {i} $,
 +
but depends only on the homology classes realized by the spheres  $  S  ^ {3} $
 +
and the framing  $  U $.
 +
The [[Arf-invariant|Arf-invariant]] of the function  $  \phi _ {0} :  H _ {3} ( M  ^ {6} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $
 +
so obtained satisfies the formula  $  \phi _ {0} ( x + y ) = \phi _ {0} ( x) + \phi _ {0} ( y) + \phi ( x, y ) $
 +
$  \mathop{\rm mod}  2 $,
 +
where  $  \phi ( x , y ) $
 +
is the intersection form of the 3-dimensional homology space on the manifold  $  M  ^ {6} $,
 +
and is called the Kervaire–Milnor invariant of this manifold with framing  $  U $.
 +
The pair  $  ( M  ^ {6} , U ) $
 +
has a framed surgery to the pair  $  ( S  ^ {6} , V ) $
 +
if and only if the Kervaire–Milnor invariant of  $  ( M  ^ {6} , U ) $
 +
is zero.
 +
 
 +
Similar constructions have been carried out for $  M  ^ {14} $.  
 +
The Kervaire–Milnor invariant in dimension six is the only invariant of the stable 6-dimensional framed cobordism and defines an isomorphism $  \pi _ {n+ 6} ( S  ^ {n} ) \approx \mathbf Z _ {2} $,  
 +
$  n \geq  7 $.  
 +
However, in dimension fourteen it is not a unique invariant of the stable 14-dimensional framed cobordism, i.e. the stable group $  \pi _ {n+14} ( S  ^ {n} ) $,  
 +
$  n \geq  16 $,  
 +
is defined by framings on the sphere $  S  ^ {14} $
 +
and on $  S  ^ {7} \times S  ^ {7} $.
  
 
For references see [[Kervaire invariant|Kervaire invariant]].
 
For references see [[Kervaire invariant|Kervaire invariant]].

Latest revision as of 17:53, 20 January 2022


An invariant of framed surgery of a closed 6- or 14-dimensional framed manifold.

Let $ M ^ {6} $ be a stably-parallelizable 2-connected manifold on which is given a stable $ N $-dimensional framing $ ( M ^ {6} , U ) $, i.e. a trivialization of the stable $ N $-dimensional normal bundle. Let $ S _ {i} ^ {3} $ be spheres realizing a basis of the 3-dimensional homology space of $ M ^ {6} $. By summing the given $ N $-trivialization $ U $ with certain trivializations $ \alpha _ {i} \in \pi _ {3} ( \mathop{\rm SO} _ {3} ) $ of tubular neighbourhoods of the spheres $ S _ {i} ^ {3} $ in $ M ^ {6} $, one obtains an $ ( N + 3 ) $-dimensional trivialization of the stable normal bundles to the spheres $ S _ {i} ^ {3} $ and the corresponding elements $ \alpha _ {i} ^ {1} \in \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) $. The cokernel of the stable homomorphism $ s : \pi _ {n} ( \mathop{\rm SO} _ {N+ 3} ) \rightarrow \pi _ {n} ( \mathop{\rm SO} _ {N+ n} ) $ is isomorphic to $ \mathbf Z _ {2} $ for $ n = 3 $, so that each sphere $ S _ {i} ^ {3} $ is put into correspondence with an element of the group $ \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) / \mathop{\rm Im} s $ (according to the value of the elements $ \alpha _ {i} ^ {1} $ which they take in the group $ \mathbf Z _ {2} $ after factorization by $ \alpha _ {i} ^ {1} $). This value does not depend on the choice of the elements $ \alpha _ {i} $, but depends only on the homology classes realized by the spheres $ S ^ {3} $ and the framing $ U $. The Arf-invariant of the function $ \phi _ {0} : H _ {3} ( M ^ {6} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $ so obtained satisfies the formula $ \phi _ {0} ( x + y ) = \phi _ {0} ( x) + \phi _ {0} ( y) + \phi ( x, y ) $ $ \mathop{\rm mod} 2 $, where $ \phi ( x , y ) $ is the intersection form of the 3-dimensional homology space on the manifold $ M ^ {6} $, and is called the Kervaire–Milnor invariant of this manifold with framing $ U $. The pair $ ( M ^ {6} , U ) $ has a framed surgery to the pair $ ( S ^ {6} , V ) $ if and only if the Kervaire–Milnor invariant of $ ( M ^ {6} , U ) $ is zero.

Similar constructions have been carried out for $ M ^ {14} $. The Kervaire–Milnor invariant in dimension six is the only invariant of the stable 6-dimensional framed cobordism and defines an isomorphism $ \pi _ {n+ 6} ( S ^ {n} ) \approx \mathbf Z _ {2} $, $ n \geq 7 $. However, in dimension fourteen it is not a unique invariant of the stable 14-dimensional framed cobordism, i.e. the stable group $ \pi _ {n+14} ( S ^ {n} ) $, $ n \geq 16 $, is defined by framings on the sphere $ S ^ {14} $ and on $ S ^ {7} \times S ^ {7} $.

For references see Kervaire invariant.

How to Cite This Entry:
Kervaire-Milnor invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kervaire-Milnor_invariant&oldid=22647
This article was adapted from an original article by M.A. Shtan'ko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article