Difference between revisions of "Keldysh-Lavrent'ev example"
Ulf Rehmann (talk | contribs) m (moved Keldysh–Lavrent'ev example to Keldysh-Lavrent'ev example: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0551301.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/K055/K.0505130 Keldysh\ANDLavrent\AApev example | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An example of a simply-connected domain $ \Delta $ | |
+ | in the complex $ z $- | ||
+ | plane bounded by a rectifiable Jordan curve but not belonging to the class $ S $ | ||
+ | of Smirnov domains (cf. [[Smirnov domain|Smirnov domain]]). | ||
− | + | Let $ z = f ( w ) $ | |
+ | be a function realizing a [[Conformal mapping|conformal mapping]] of the unit disc $ E = \{ {w } : {| w | < 1 } \} $ | ||
+ | onto a simply-connected domain $ D $ | ||
+ | bounded by a rectifiable Jordan curve. It is known that $ f ( w) $ | ||
+ | is continuous and one-to-one in the closed disc $ \overline{E}\; $ | ||
+ | and that the logarithm of the modulus of the derivative $ \mathop{\rm ln} | f ^ { \prime } ( w) | $ | ||
+ | can be represented in $ E $ | ||
+ | by the Poisson–Stieltjes integral | ||
− | + | $$ \tag{* } | |
+ | \mathop{\rm ln} | f ^ { \prime } ( \rho e ^ {i \phi } ) | = \int\limits | ||
− | + | \frac{1 - \rho ^ {2} }{1 + \rho ^ {2} - 2 \rho \cos ( \phi - \theta ) } | |
+ | \ | ||
+ | d \mu ( \theta ) , | ||
+ | $$ | ||
− | + | where $ \mu $ | |
+ | is the normalized Borel measure on $ \partial E $, | ||
+ | $ \int d \mu ( \theta ) = 1 $. | ||
+ | The class $ S $ | ||
+ | consists of those closed domains $ D $ | ||
+ | for which the measure $ \mu $ | ||
+ | in the representation (*) is absolutely continuous with respect to the Lebesgue measure on $ \partial E $ | ||
+ | and the integral (*) becomes the Poisson–Lebesgue integral (cf. [[Poisson integral|Poisson integral]]) of the boundary values $ \mathop{\rm ln} | f ^ { \prime } ( e ^ {i \theta } ) | $, | ||
+ | which exist almost-everywhere on $ E $. | ||
− | A complete solution of the problem of characterizing domains of class | + | M.V. Keldysh and M.A. Lavrent'ev [[#References|[1]]] constructed for any $ h $, |
+ | $ 0 < h < 1 $, | ||
+ | a simply-connected domain $ \Delta $ | ||
+ | bounded by a rectifiable Jordan curve $ \Gamma $, | ||
+ | located in the disc $ | z | < h $, | ||
+ | $ 0 \in \Delta $, | ||
+ | such that under a conformal mapping of $ \Delta $ | ||
+ | onto $ E $, | ||
+ | |||
+ | $$ | ||
+ | z = 0 \leftrightarrow w = 0 , | ||
+ | $$ | ||
+ | |||
+ | and the image of any arc $ \Gamma $ | ||
+ | on the circle $ \partial E = \{ {w } : {| w | = 1 } \} $ | ||
+ | is an arc of the same length. This domain $ \Delta $ | ||
+ | does not belong to the class $ S $, | ||
+ | since $ \mathop{\rm ln} | f ^ { \prime } ( e ^ {i \theta } ) | = 0 $ | ||
+ | almost-everywhere on $ \partial E $. | ||
+ | |||
+ | A complete solution of the problem of characterizing domains of class $ S $( | ||
+ | domains of Smirnov type) has so far (1989) not been obtained (see [[#References|[2]]], [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.V. Keldysh, M.A. Lavrent'ev, "Sur la répresentation conforme des domains limités par des courbes rectifiables" ''Ann. Ecole Norm. Sup.'' , '''54''' (1937) pp. 1–38</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.J. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.V. Keldysh, M.A. Lavrent'ev, "Sur la répresentation conforme des domains limités par des courbes rectifiables" ''Ann. Ecole Norm. Sup.'' , '''54''' (1937) pp. 1–38</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.J. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 22:14, 5 June 2020
An example of a simply-connected domain $ \Delta $
in the complex $ z $-
plane bounded by a rectifiable Jordan curve but not belonging to the class $ S $
of Smirnov domains (cf. Smirnov domain).
Let $ z = f ( w ) $ be a function realizing a conformal mapping of the unit disc $ E = \{ {w } : {| w | < 1 } \} $ onto a simply-connected domain $ D $ bounded by a rectifiable Jordan curve. It is known that $ f ( w) $ is continuous and one-to-one in the closed disc $ \overline{E}\; $ and that the logarithm of the modulus of the derivative $ \mathop{\rm ln} | f ^ { \prime } ( w) | $ can be represented in $ E $ by the Poisson–Stieltjes integral
$$ \tag{* } \mathop{\rm ln} | f ^ { \prime } ( \rho e ^ {i \phi } ) | = \int\limits \frac{1 - \rho ^ {2} }{1 + \rho ^ {2} - 2 \rho \cos ( \phi - \theta ) } \ d \mu ( \theta ) , $$
where $ \mu $ is the normalized Borel measure on $ \partial E $, $ \int d \mu ( \theta ) = 1 $. The class $ S $ consists of those closed domains $ D $ for which the measure $ \mu $ in the representation (*) is absolutely continuous with respect to the Lebesgue measure on $ \partial E $ and the integral (*) becomes the Poisson–Lebesgue integral (cf. Poisson integral) of the boundary values $ \mathop{\rm ln} | f ^ { \prime } ( e ^ {i \theta } ) | $, which exist almost-everywhere on $ E $.
M.V. Keldysh and M.A. Lavrent'ev [1] constructed for any $ h $, $ 0 < h < 1 $, a simply-connected domain $ \Delta $ bounded by a rectifiable Jordan curve $ \Gamma $, located in the disc $ | z | < h $, $ 0 \in \Delta $, such that under a conformal mapping of $ \Delta $ onto $ E $,
$$ z = 0 \leftrightarrow w = 0 , $$
and the image of any arc $ \Gamma $ on the circle $ \partial E = \{ {w } : {| w | = 1 } \} $ is an arc of the same length. This domain $ \Delta $ does not belong to the class $ S $, since $ \mathop{\rm ln} | f ^ { \prime } ( e ^ {i \theta } ) | = 0 $ almost-everywhere on $ \partial E $.
A complete solution of the problem of characterizing domains of class $ S $( domains of Smirnov type) has so far (1989) not been obtained (see [2], [3]).
References
[1] | M.V. Keldysh, M.A. Lavrent'ev, "Sur la répresentation conforme des domains limités par des courbes rectifiables" Ann. Ecole Norm. Sup. , 54 (1937) pp. 1–38 |
[2] | I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
[3] | A.J. Lohwater, "The boundary behaviour of analytic functions" Itogi Nauk. i Tekhn. Mat. Anal. , 10 (1973) pp. 99–259 (In Russian) |
Comments
The construction of Keldysh and Lavrent'ev is extraordinarily complicated. For a more accessible treatment, see [a1] and [a2].
References
[a1] | P.L. Duren, H.S. Shapiro, A.L. Shields, "Singular measures and domains not of Smirnov type" Duke Math. J. , 33 (1966) pp. 247–254 |
[a2] | G. Piranian, "Two monotonic, singular, uniformly almost smooth functions" Duke Math. J. , 33 (1966) pp. 254–262 |
Keldysh-Lavrent'ev example. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Keldysh-Lavrent%27ev_example&oldid=22641