Difference between revisions of "Drinfel'd-Turaev quantization"
Ulf Rehmann (talk | contribs) m (moved Drinfel'd–Turaev quantization to Drinfel'd-Turaev quantization: ascii title) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | A type of quantization typically encountered in [[ | + | A type of quantization typically encountered in [[knot theory]], for example in Jones–Conway, homotopy or Kauffman bracket skein modules of three-dimensional manifolds ([[#References|[a3]]], [[#References|[a1]]], [[#References|[a2]]], cf. also [[Skein module]]). |
− | Fix a [[ | + | Fix a [[commutative ring]] with identity, $R$. Let $P$ be a [[Poisson algebra]] over $R$ and let $A$ be an algebra over $R[q^{\pm1}]$ which is free as an $R[q^{\pm1}]$-module (cf. also [[Free module]]). An $R$-module [[epimorphism]] $\phi:A \rightarrow P$ is called a Drinfel'd–Turaev quantization of $P$ if |
− | i) | + | i) $\phi(p(q)a) = p(1)\phi(a)$ for all $a\in A$ and all $p(q) \in R[q^{\pm1}]$; and |
− | ii) | + | ii) $ab-ba \in (q-1)\phi^{-1}([\phi(a),\phi(b)])$ for all $a,b \in P$. |
− | If | + | If $A$ is not required to be free as an $R[z]$-module, one obtains a so-called weak Drinfel'd–Turaev quantization. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Hoste, J.H. Przytycki, "Homotopy skein modules of oriented | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Hoste, J.H. Przytycki, "Homotopy skein modules of oriented $3$-manifolds" ''Math. Proc. Cambridge Philos. Soc.'' , '''108''' (1990) pp. 475–488</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J.H. Przytycki, "Homotopy and $q$-homotopy skein modules of $3$-manifolds: An example in Algebra Situs" , ''Proc. Conf. in Low-Dimensional Topology in Honor of Joan Birman's 70th Birthday (Columbia Univ./Barnard College, March, 14-15, 1998)'' , Internat. Press (2000)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> V.G. Turaev, "Skein quantization of Poisson algebras of loops on surfaces" ''Ann. Sci. École Norm. Sup.'' , '''4''' : 24 (1991) pp. 635–704</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 19:52, 5 March 2018
A type of quantization typically encountered in knot theory, for example in Jones–Conway, homotopy or Kauffman bracket skein modules of three-dimensional manifolds ([a3], [a1], [a2], cf. also Skein module).
Fix a commutative ring with identity, $R$. Let $P$ be a Poisson algebra over $R$ and let $A$ be an algebra over $R[q^{\pm1}]$ which is free as an $R[q^{\pm1}]$-module (cf. also Free module). An $R$-module epimorphism $\phi:A \rightarrow P$ is called a Drinfel'd–Turaev quantization of $P$ if
i) $\phi(p(q)a) = p(1)\phi(a)$ for all $a\in A$ and all $p(q) \in R[q^{\pm1}]$; and
ii) $ab-ba \in (q-1)\phi^{-1}([\phi(a),\phi(b)])$ for all $a,b \in P$.
If $A$ is not required to be free as an $R[z]$-module, one obtains a so-called weak Drinfel'd–Turaev quantization.
References
[a1] | J. Hoste, J.H. Przytycki, "Homotopy skein modules of oriented $3$-manifolds" Math. Proc. Cambridge Philos. Soc. , 108 (1990) pp. 475–488 |
[a2] | J.H. Przytycki, "Homotopy and $q$-homotopy skein modules of $3$-manifolds: An example in Algebra Situs" , Proc. Conf. in Low-Dimensional Topology in Honor of Joan Birman's 70th Birthday (Columbia Univ./Barnard College, March, 14-15, 1998) , Internat. Press (2000) |
[a3] | V.G. Turaev, "Skein quantization of Poisson algebras of loops on surfaces" Ann. Sci. École Norm. Sup. , 4 : 24 (1991) pp. 635–704 |
Drinfel'd-Turaev quantization. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Drinfel%27d-Turaev_quantization&oldid=22359