|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408001.png" /> be an extension of fields, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408002.png" /> be some "object" defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408003.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408004.png" /> could be a vector space together with a quadratic form, a Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408005.png" />, an Azumaya algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408006.png" />, a variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408007.png" />, an algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408008.png" />, a representation of a finite group in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f0408009.png" />-vector space, etc. A form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080010.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080011.png" />, more precisely, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080013.png" />-form, is an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080014.png" /> of the same type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080017.png" /> become isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080018.png" />, i.e. after extending scalars from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080019.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080020.png" /> the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080022.png" /> become isomorphic. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080023.png" /> denote the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080024.png" />-isomorphism classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080025.png" /> forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080026.png" />. If now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080027.png" /> is a Galois extension, then under suitable circumstances one has a bijection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080028.png" /> and the Galois cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080029.png" /> (cf. [[Galois cohomology|Galois cohomology]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080030.png" /> is the group of automorphisms over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080032.png" />. Consider, for instance, the case where the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080033.png" /> is a finite-dimensional algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080034.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080035.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080036.png" /> is a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080037.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080038.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080039.png" />-algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080040.png" /> be an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080041.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080042.png" />, i.e. an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080043.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080044.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080045.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080046.png" /> is another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080047.png" />-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080048.png" />. This defines the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080049.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080050.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080051.png" /> be a form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080052.png" />. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080053.png" />-isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080054.png" /> is naturally a principal homogeneous space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080055.png" /> and thus defines an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080056.png" />. This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080057.png" /> is a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080058.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080059.png" />-tensor (the previous case corresponds to the case of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080060.png" />-tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080061.png" />.) For the case of algebraic groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080062.png" /> cf. [[Form of an algebraic group|Form of an algebraic group]].
| + | {{MSC|12}} |
| + | {{TEX|done}} |
| | | |
− | For the case of algebraic varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080063.png" /> one has that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080064.png" /> is injective and that it is bijective if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080065.png" /> is quasi-projective. | + | Let $k'/k$ be an extension of fields, and let $X$ be some "object" defined over $k$. For example, $X$ could be a vector space together with a [[quadratic form]], a [[Lie algebra]] over $k$, an [[Azumaya algebra]] over $k$, an [[algebraic variety]] over $k$, an [[algebraic group]] over $k$, a [[representation of a group|representation of a finite group]] in a $k$-vector space, etc. A form of $X$ over $k$, more precisely, a $k'/k$-form, is an object $Y$ of the same type over $k$ such that $X$ and $Y$ become isomorphic over $k'$, i.e. after extending scalars from $k$ to $k'$ the objects $X$ and $Y$ become isomorphic. Let $E(k'/k,X)$ denote the set of $k$-isomorphism classes of $k'/k$ forms of $X$. If now $k'/k$ is a Galois extension, then under suitable circumstances one has a bijection between $E(k'/k,X)$ and the Galois cohomology group $\def\H{ {\rm H}}\H^1(\def\Gal{ {\rm Gal}}\Gal(k'/k),\def\Aut{ {\rm Aut}}\Aut_{k'}(X))$ (cf. |
| + | [[Galois cohomology|Galois cohomology]]), where $\Aut_{k'}(X)$ is the group of automorphisms over $k'$ of $X$. Consider, for instance, the case where the object $X$ is a finite-dimensional algebra $A$ over $k$. Then $B$ is a form of $A$ if $A\otimes_k k' \simeq B\otimes_k k'$ as $k'$-algebras. Let $\def\a{\alpha}\a$ be an automorphism of $A$ over $k'$, i.e. an isomorphism of $k'$-algebras $\a:A\otimes_k k'\to B\otimes_k k'$, and let $s\in\Gal(k'/k)$. Then $s(\a) = (1\otimes s)\circ \a\circ(1\otimes s^{-1})$ is another $k'$-automorphism of $A$. This defines the action of $\Gal(k'/k)$ on $\Aut_k'(A)$. Now let $B$ be a form of $A$. The set of $k'$-isomorphisms $B\otimes_k k'\to A\otimes_k k'$ is naturally a [[principal homogeneous space]] over $\Aut_k'(A)$ and thus defines an element of $\H^1(\Gal(k'/k),\Aut_k'(A))$. This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure $X$ is a vector space $V$ together with a $(p,q)$-tensor (the previous case corresponds to the case of a $(2,1)$-tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: $\H^1(\Gal(k'/k),\def\GL{ {\rm GL}}\GL_n(k'))=0$, cf. [[Galois cohomology]]) For the case of algebraic groups over $k$ cf. |
| + | [[Form of an algebraic group|Form of an algebraic group]]. |
| | | |
− | The concept of forms makes sense in a far more general setting, e.g. in any category with base change, i.e. with fibre products. Indeed, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080066.png" /> be such a category, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080067.png" /> an object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080068.png" />. An object over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080069.png" /> is a morphism in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080070.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080071.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080072.png" /> be a morphism in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080073.png" />. Base change from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080074.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080075.png" /> gives the pullback (fibre product) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080076.png" /> defined by the [[Cartesian square|Cartesian square]]
| + | For the case of algebraic varieties over $k$ one has that $E(k'/k,X)\to \H^1(\Gal(k'/k),\Aut_k'(X))$ is injective and that it is bijective if $X$ is quasi-projective. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080077.png" /></td> </tr></table>
| + | The concept of forms makes sense in a far more general setting, e.g. in any category with [[base change]], i.e. with [[fibre product|fibre products]]. Indeed, let $\def\fC{ {\mathfrak C}}\fC$ be such a category, and $S$ an object in $\fC$. An object over $\fC$ is a morphism in $\fC$, $X\to S$. Let $f: S'\to S$ be a morphism in $C$. Base change from $S$ to $S'$ gives the pullback (fibre product) $X_S'=X\times_S S'$ defined by the |
| + | [[Cartesian square|Cartesian square]] |
| + | $$\def\mapright#1{\xrightarrow{#1}} |
| + | \def\mapdown#1{\Big\downarrow\rlap{\raise2pt{\scriptstyle{#1}}}} |
| + | \begin{array}{ccc} |
| + | X_{S'}& \mapright{} & X \\ |
| + | \mapdown{} & & \mapdown{} \\ |
| + | S'& \mapright{} & S |
| + | \end{array}$$ |
| + | (In case $S' = \def\Spec{ {\rm Spec}}\Spec(k')$, $S = \def\Spec{ {\rm Spec}}\Spec(k)$ and $\fC$ is, for instance, the category of (affine) [[Scheme|schemes]] this corresponds to extending scalars.) |
| | | |
− | (In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080080.png" /> is, for instance, the category of (affine) schemes this corresponds to extending scalars.)
| + | An object $Y\in\fC_{/S}$ is now an $S'/S$-form of $X\in\fC_{/S}$ if the objects $X_{S'}$ and $Y_{S'}$ are isomorphic over $S'$. For an even more general setting cf. |
| + | {{Cite|Gr}}. |
| | | |
− | An object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080081.png" /> is now an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080083.png" />-form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080084.png" /> if the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080086.png" /> are isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080087.png" />. For an even more general setting cf. [[#References|[a2]]].
| + | A related problem (to that of forms) is the subject of descent theory. In the setting of a category with base change as above this theory is concerned with the question: Given $Z\in\fC_{/S'}$, does there exists an $X$ over $S$ such that $X_{S'}$ is isomorphic over $S'$ to $Z$, and what properties must $Z$ satisfy for this to be the case. |
| | | |
− | A related problem (to that of forms) is the subject of descent theory. In the setting of a category with base change as above this theory is concerned with the question: Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080088.png" />, does there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080089.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080090.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080091.png" /> is isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080092.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080093.png" />, and what properties must <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080094.png" /> satisfy for this to be the case.
| + | Below this question is examined in the following setting: $R$ is a commutative algebra (with unit element) and $S$ is a commutative $R$-algebra. Given a module $M$ over $S$ the question is whether there exists a module $N$ over $R$ such that $M\simeq N_S = N\otimes_R S$ (as $S$-modules). Below all tensor products $\otimes$ are tensor products over $R$: $\otimes_R$. If $M$ is of the form $N_S$ there is a natural isomorphism of $S\otimes S$ modules $S\otimes N_S \to N_S\otimes S$ given by $\def\o{\otimes} s_1\o n\o s_2\mapsto n\o s_1\o s_2$. Let $M$ be an $S$-module. A descent datum on $M$ is an isomorphism of $S\o S$ modules $g:S\o M \to M\o S$ such that $g_2 = g_3 g_1$. Here $g_1, g_2, g_3$ are the three natural $S\o S\o S$-module homomorphisms defined by $g$, where $g_i$ is the identity on factor $i$ and given by $g$ on the other two components: |
| | | |
− | Below this question is examined in the following setting: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080095.png" /> is a commutative algebra (with unit element) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080096.png" /> is a commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080097.png" />-algebra. Given a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080098.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f04080099.png" /> the question is whether there exists a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800100.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800101.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800102.png" /> (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800103.png" />-modules). Below all tensor products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800104.png" /> are tensor products over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800105.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800106.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800107.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800108.png" /> there is a natural isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800109.png" /> modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800110.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800111.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800112.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800113.png" />-module. A descent datum on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800114.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800115.png" /> modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800116.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800117.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800118.png" /> are the three natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800119.png" />-module homomorphisms defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800120.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800121.png" /> is the identity on factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800122.png" /> and given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800123.png" /> on the other two components:
| + | $$g_1 : S\o S\o M\to S\o M\o S,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800124.png" /></td> </tr></table>
| + | $$g_2 : S\o S\o M\to M\o S\o S,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800125.png" /></td> </tr></table>
| + | $$g_3 : S\o M\o S\to M\o S\o S.$$ |
| + | The faithfully flat descent theorem now says that if $S$ is faithfully flat over $R$ and $g$ is a descent datum for $M$ over $S$, then there exists an $R$-module $N$ and an isomorphism $\eta : N_S\to M$ such that the following diagram commutes |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800126.png" /></td> </tr></table>
| + | $$\begin{array}{ccc} S\o N_S & \mapright{1\o \eta} & S\o M\\ |
| + | \mapdown{} & & \mapdown{g}\\ |
| + | N_S\o S & \mapright{\eta\o 1} & M\o S\\ \end{array}$$ |
| + | where the left vertical arrow is the descent datum on $N_S$ described above. Moreover, the pair $(N,\eta)$ is uniquely defined by this property. One defines $N$ by an invariance property: $N=\{x\in M : x\o 1 = g(1\o x)\}$ (which is like invariance under the Galois group in the case of Galois descent). |
| | | |
− | The faithfully flat descent theorem now says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800127.png" /> is faithfully flat over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800128.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800129.png" /> is a descent datum for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800130.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800131.png" />, then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800132.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800133.png" /> and an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800134.png" /> such that the following diagram commutes
| + | There is a similar theorem for descent of algebras over $S$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800135.png" /></td> </tr></table>
| + | In [[algebraic geometry]] one has for instance the following descent theorem (a globalization of the previous one for algebras). For a morphism of schemes $f : Y\to X$, consider the fibre products $Y\times_X Y$ and $Y\times_X Y\times_X Y$ and let $p_{ij} : Y\times_X Y\times_X Y \to Y\times_X Y$ be the projections $(y_1,y_2,y_3)\mapsto (y_i,y_j)$, $3\ge i>j \ge 1$; and $p_i: Y\times_X Y \to Y$ the projections $(y_1,y_2)\mapsto y_i,$, $i=1,2$. Let $f:Y\to X$ be faithfully flat and compact. Then to give a scheme $Z$ affine over $X$ is the same as to give a scheme $Z'$ affine over $Y$ together with an isomorphism $\def\a{\alpha}\a: p_1^*Z'\to p_2^*Z'$ such that $p_{31}^*(\a) = p_{32}^*(\a)p_{21}^*(\a)$. |
| | | |
− | where the left vertical arrow is the descent datum on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800136.png" /> described above. Moreover, the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800137.png" /> is uniquely defined by this property. One defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800138.png" /> by an invariance property: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800139.png" /> (which is like invariance under the Galois group in the case of Galois descent).
| + | The theory of descent is quite general and includes such matters as specifying a section of a sheaf by local sections and the construction of locally trivial fibre bundles by glueing together trivial bundles $U_i\times F\to U_i$ over the elements of an open covering $\{U_i\}$ of $X$. Indeed, let $X'$ be the disjoint union of the $U_i$ and $p:X'\to X$ the natural projection. Giving glueing data $\a_{ij}(U_i\cap U_j)\times F \to (U_j\cap U_i)\times F$ is the same as giving an isomorphism $\a: p_1^*E'\to p_2^* E'$, where $E'$ is the trivial vector bundle $X'\times F$ with fibre $F$ and the compatibility of the glueing data amounts to the condition $p_{31}^*(\a) = p_{32}^*(\a) p_{21}^*(\a) $. |
| | | |
− | There is a similar theorem for descent of algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800140.png" />.
| + | For a treatment of forms of Lie algebras (over fields) cf. |
− | | + | {{Cite|Ja}}, for Lie algebras over characteristic zero fields and the modular case (i.e. over fields of characteristic $p>0$) cf. |
− | In algebraic geometry one has for instance the following descent theorem (a globalization of the previous one for algebras). For a morphism of schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800141.png" />, consider the fibre products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800142.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800143.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800144.png" /> be the projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800145.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800146.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800147.png" /> the projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800148.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800149.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800150.png" /> be faithfully flat and compact. Then to give a scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800151.png" /> affine over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800152.png" /> is the same as to give a scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800153.png" /> affine over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800154.png" /> together with an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800155.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800156.png" />.
| + | {{Cite|Se2}}. For a quite comprehensive treatment of descent and forms cf. |
− | | + | {{Cite|KnOj}}. |
− | The theory of descent is quite general and includes such matters as specifying a section of a sheaf by local sections and the construction of locally trivial fibre bundles by glueing together trivial bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800157.png" /> over the elements of an open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800158.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800159.png" />. Indeed, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800160.png" /> be the disjoint union of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800161.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800162.png" /> the natural projection. Giving glueing data <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800163.png" /> is the same as giving an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800164.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800165.png" /> is the trivial vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800166.png" /> with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800167.png" /> and the compatibility of the glueing data amounts to the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800168.png" />.
| |
− | | |
− | For a treatment of forms of Lie algebras (over fields) cf. [[#References|[a7]]], for Lie algebras over characteristic zero fields and the modular case (i.e. over fields of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800169.png" />) cf. [[#References|[a5]]]. For a quite comprehensive treatment of descent and forms cf. [[#References|[a1]]]. | |
| | | |
| A form of an object is also occasionally called a twisted form. | | A form of an object is also occasionally called a twisted form. |
| | | |
− | In the case of descent with respect to a Galois field extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800170.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040800/f040800171.png" />) one speaks of Galois descent. | + | In the case of descent with respect to a Galois field extension $k\subset k'$ (or $\Spec(k') \to \Spec(k)$) one speaks of Galois descent. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.-A. Knus, M. Ojanguren, "Théorie de la descent et algèbres d'Azumaya" , Springer (1974) {{MR|417149}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Grothendieck, "Revêtements étales et groupe fondamental" , ''SGA 1960–1961'' , '''Exp. VI: Categories fibrées et descente''' , IHES (1961) {{MR|2017446}} {{MR|0354651}} {{MR|0217088}} {{MR|0217087}} {{ZBL|1039.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "Lectures on an introduction to Grothendieck's theory of the fundamental group." , Tata Inst. Fund. Res. (1967) pp. Chapt. VII {{MR|302650}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1973) {{MR|0404227}} {{ZBL|0259.12011}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G.B. Seligman, "Modular Lie algebras" , Springer (1967) pp. Chapt. IV {{MR|0245627}} {{ZBL|0189.03201}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) pp. Chapt. V, Sect. 20 {{MR|0103191}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979)) {{MR|0559927}} {{ZBL|0333.17009}} {{ZBL|0215.38701}} {{ZBL|0144.27103}} {{ZBL|0121.27601}} {{ZBL|0121.27504}} {{ZBL|0109.26201}} {{ZBL|0198.05404}} {{ZBL|0064.27002}} {{ZBL|0064.03503}} {{ZBL|0046.03402}} {{ZBL|0043.26803}} {{ZBL|0039.02803}} {{ZBL|0063.03015}} {{ZBL|0025.30302}} {{ZBL|0025.30301}} {{ZBL|0022.19801}} {{ZBL|0019.19402}} {{ZBL|0018.10302}} {{ZBL|0017.29203}} {{ZBL|0016.20001}} </TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Gr}}||valign="top"| A. Grothendieck, "Revêtements étales et groupe fondamental", ''SGA 1960–1961'', '''Exp. VI: Categories fibrées et descente''', IHES (1961) {{MR|2017446}} {{MR|0354651}} {{MR|0217088}} {{MR|0217087}} {{ZBL|1039.14001}} |
| + | |- |
| + | |valign="top"|{{Ref|Ja}}||valign="top"| N. Jacobson, "Lie algebras", Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979)) {{MR|0148716}} {{MR|0143793} {{ZBL|0121.27504}} {{Zbl}0109.26201}} |
| + | |- |
| + | |valign="top"|{{Ref|KnOj}}||valign="top"| M.-A. Knus, M. Ojanguren, "Théorie de la descent et algèbres d'Azumaya", Springer (1974) {{MR|417149}} {{ZBL|}} |
| + | |- |
| + | |valign="top"|{{Ref|Mu}}||valign="top"| J.P. Murre, "Lectures on an introduction to Grothendieck's theory of the fundamental group.", Tata Inst. Fund. Res. (1967) pp. Chapt. VII {{MR|302650}} {{ZBL|}} |
| + | |- |
| + | |valign="top"|{{Ref|Se}}||valign="top"| J.-P. Serre, "Cohomologie Galoisienne", Springer (1973) {{MR|0404227}} {{ZBL|0259.12011}} |
| + | |- |
| + | |valign="top"|{{Ref|Se2}}||valign="top"| G.B. Seligman, "Modular Lie algebras", Springer (1967) pp. Chapt. IV {{MR|0245627}} {{ZBL|0189.03201}} |
| + | |- |
| + | |valign="top"|{{Ref|Se3}}||valign="top"| J.-P. Serre, "Groupes algébrique et corps des classes", Hermann (1959) pp. Chapt. V, Sect. 20 {{MR|0103191}} {{ZBL|}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 12-XX [MSN][ZBL]
Let $k'/k$ be an extension of fields, and let $X$ be some "object" defined over $k$. For example, $X$ could be a vector space together with a quadratic form, a Lie algebra over $k$, an Azumaya algebra over $k$, an algebraic variety over $k$, an algebraic group over $k$, a representation of a finite group in a $k$-vector space, etc. A form of $X$ over $k$, more precisely, a $k'/k$-form, is an object $Y$ of the same type over $k$ such that $X$ and $Y$ become isomorphic over $k'$, i.e. after extending scalars from $k$ to $k'$ the objects $X$ and $Y$ become isomorphic. Let $E(k'/k,X)$ denote the set of $k$-isomorphism classes of $k'/k$ forms of $X$. If now $k'/k$ is a Galois extension, then under suitable circumstances one has a bijection between $E(k'/k,X)$ and the Galois cohomology group $\def\H{ {\rm H}}\H^1(\def\Gal{ {\rm Gal}}\Gal(k'/k),\def\Aut{ {\rm Aut}}\Aut_{k'}(X))$ (cf.
Galois cohomology), where $\Aut_{k'}(X)$ is the group of automorphisms over $k'$ of $X$. Consider, for instance, the case where the object $X$ is a finite-dimensional algebra $A$ over $k$. Then $B$ is a form of $A$ if $A\otimes_k k' \simeq B\otimes_k k'$ as $k'$-algebras. Let $\def\a{\alpha}\a$ be an automorphism of $A$ over $k'$, i.e. an isomorphism of $k'$-algebras $\a:A\otimes_k k'\to B\otimes_k k'$, and let $s\in\Gal(k'/k)$. Then $s(\a) = (1\otimes s)\circ \a\circ(1\otimes s^{-1})$ is another $k'$-automorphism of $A$. This defines the action of $\Gal(k'/k)$ on $\Aut_k'(A)$. Now let $B$ be a form of $A$. The set of $k'$-isomorphisms $B\otimes_k k'\to A\otimes_k k'$ is naturally a principal homogeneous space over $\Aut_k'(A)$ and thus defines an element of $\H^1(\Gal(k'/k),\Aut_k'(A))$. This mapping is a bijection in this case. More generally one has such a bijection for the case that the structure $X$ is a vector space $V$ together with a $(p,q)$-tensor (the previous case corresponds to the case of a $(2,1)$-tensor). (To prove surjectivity one needs the generalization of Hilbert's theorem 90: $\H^1(\Gal(k'/k),\def\GL{ {\rm GL}}\GL_n(k'))=0$, cf. Galois cohomology) For the case of algebraic groups over $k$ cf.
Form of an algebraic group.
For the case of algebraic varieties over $k$ one has that $E(k'/k,X)\to \H^1(\Gal(k'/k),\Aut_k'(X))$ is injective and that it is bijective if $X$ is quasi-projective.
The concept of forms makes sense in a far more general setting, e.g. in any category with base change, i.e. with fibre products. Indeed, let $\def\fC{ {\mathfrak C}}\fC$ be such a category, and $S$ an object in $\fC$. An object over $\fC$ is a morphism in $\fC$, $X\to S$. Let $f: S'\to S$ be a morphism in $C$. Base change from $S$ to $S'$ gives the pullback (fibre product) $X_S'=X\times_S S'$ defined by the
Cartesian square
$$\def\mapright#1{\xrightarrow{#1}}
\def\mapdown#1{\Big\downarrow\rlap{\raise2pt{\scriptstyle{#1}}}}
\begin{array}{ccc}
X_{S'}& \mapright{} & X \\
\mapdown{} & & \mapdown{} \\
S'& \mapright{} & S
\end{array}$$
(In case $S' = \def\Spec{ {\rm Spec}}\Spec(k')$, $S = \def\Spec{ {\rm Spec}}\Spec(k)$ and $\fC$ is, for instance, the category of (affine) schemes this corresponds to extending scalars.)
An object $Y\in\fC_{/S}$ is now an $S'/S$-form of $X\in\fC_{/S}$ if the objects $X_{S'}$ and $Y_{S'}$ are isomorphic over $S'$. For an even more general setting cf.
[Gr].
A related problem (to that of forms) is the subject of descent theory. In the setting of a category with base change as above this theory is concerned with the question: Given $Z\in\fC_{/S'}$, does there exists an $X$ over $S$ such that $X_{S'}$ is isomorphic over $S'$ to $Z$, and what properties must $Z$ satisfy for this to be the case.
Below this question is examined in the following setting: $R$ is a commutative algebra (with unit element) and $S$ is a commutative $R$-algebra. Given a module $M$ over $S$ the question is whether there exists a module $N$ over $R$ such that $M\simeq N_S = N\otimes_R S$ (as $S$-modules). Below all tensor products $\otimes$ are tensor products over $R$: $\otimes_R$. If $M$ is of the form $N_S$ there is a natural isomorphism of $S\otimes S$ modules $S\otimes N_S \to N_S\otimes S$ given by $\def\o{\otimes} s_1\o n\o s_2\mapsto n\o s_1\o s_2$. Let $M$ be an $S$-module. A descent datum on $M$ is an isomorphism of $S\o S$ modules $g:S\o M \to M\o S$ such that $g_2 = g_3 g_1$. Here $g_1, g_2, g_3$ are the three natural $S\o S\o S$-module homomorphisms defined by $g$, where $g_i$ is the identity on factor $i$ and given by $g$ on the other two components:
$$g_1 : S\o S\o M\to S\o M\o S,$$
$$g_2 : S\o S\o M\to M\o S\o S,$$
$$g_3 : S\o M\o S\to M\o S\o S.$$
The faithfully flat descent theorem now says that if $S$ is faithfully flat over $R$ and $g$ is a descent datum for $M$ over $S$, then there exists an $R$-module $N$ and an isomorphism $\eta : N_S\to M$ such that the following diagram commutes
$$\begin{array}{ccc} S\o N_S & \mapright{1\o \eta} & S\o M\\
\mapdown{} & & \mapdown{g}\\
N_S\o S & \mapright{\eta\o 1} & M\o S\\ \end{array}$$
where the left vertical arrow is the descent datum on $N_S$ described above. Moreover, the pair $(N,\eta)$ is uniquely defined by this property. One defines $N$ by an invariance property: $N=\{x\in M : x\o 1 = g(1\o x)\}$ (which is like invariance under the Galois group in the case of Galois descent).
There is a similar theorem for descent of algebras over $S$.
In algebraic geometry one has for instance the following descent theorem (a globalization of the previous one for algebras). For a morphism of schemes $f : Y\to X$, consider the fibre products $Y\times_X Y$ and $Y\times_X Y\times_X Y$ and let $p_{ij} : Y\times_X Y\times_X Y \to Y\times_X Y$ be the projections $(y_1,y_2,y_3)\mapsto (y_i,y_j)$, $3\ge i>j \ge 1$; and $p_i: Y\times_X Y \to Y$ the projections $(y_1,y_2)\mapsto y_i,$, $i=1,2$. Let $f:Y\to X$ be faithfully flat and compact. Then to give a scheme $Z$ affine over $X$ is the same as to give a scheme $Z'$ affine over $Y$ together with an isomorphism $\def\a{\alpha}\a: p_1^*Z'\to p_2^*Z'$ such that $p_{31}^*(\a) = p_{32}^*(\a)p_{21}^*(\a)$.
The theory of descent is quite general and includes such matters as specifying a section of a sheaf by local sections and the construction of locally trivial fibre bundles by glueing together trivial bundles $U_i\times F\to U_i$ over the elements of an open covering $\{U_i\}$ of $X$. Indeed, let $X'$ be the disjoint union of the $U_i$ and $p:X'\to X$ the natural projection. Giving glueing data $\a_{ij}(U_i\cap U_j)\times F \to (U_j\cap U_i)\times F$ is the same as giving an isomorphism $\a: p_1^*E'\to p_2^* E'$, where $E'$ is the trivial vector bundle $X'\times F$ with fibre $F$ and the compatibility of the glueing data amounts to the condition $p_{31}^*(\a) = p_{32}^*(\a) p_{21}^*(\a) $.
For a treatment of forms of Lie algebras (over fields) cf.
[Ja], for Lie algebras over characteristic zero fields and the modular case (i.e. over fields of characteristic $p>0$) cf.
[Se2]. For a quite comprehensive treatment of descent and forms cf.
[KnOj].
A form of an object is also occasionally called a twisted form.
In the case of descent with respect to a Galois field extension $k\subset k'$ (or $\Spec(k') \to \Spec(k)$) one speaks of Galois descent.
References
[Gr] |
A. Grothendieck, "Revêtements étales et groupe fondamental", SGA 1960–1961, Exp. VI: Categories fibrées et descente, IHES (1961) MR2017446 MR0354651 MR0217088 MR0217087 Zbl 1039.14001
|
[Ja] |
N. Jacobson, "Lie algebras", Dover, reprint (1979) pp. Chapt. X ((also: Dover, reprint, 1979)) MR0148716 {{MR|0143793} Zbl 0121.27504 {{Zbl}0109.26201}}
|
[KnOj] |
M.-A. Knus, M. Ojanguren, "Théorie de la descent et algèbres d'Azumaya", Springer (1974) MR417149
|
[Mu] |
J.P. Murre, "Lectures on an introduction to Grothendieck's theory of the fundamental group.", Tata Inst. Fund. Res. (1967) pp. Chapt. VII MR302650
|
[Se] |
J.-P. Serre, "Cohomologie Galoisienne", Springer (1973) MR0404227 Zbl 0259.12011
|
[Se2] |
G.B. Seligman, "Modular Lie algebras", Springer (1967) pp. Chapt. IV MR0245627 Zbl 0189.03201
|
[Se3] |
J.-P. Serre, "Groupes algébrique et corps des classes", Hermann (1959) pp. Chapt. V, Sect. 20 MR0103191
|