Difference between revisions of "Cohomology of groups"
(Importing text file) |
m (→References: latexify) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0231301.png | ||
+ | $#A+1 = 244 n = 1 | ||
+ | $#C+1 = 244 : ~/encyclopedia/old_files/data/C023/C.0203130 Cohomology of groups | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]]. | Historically, the earliest theory of a [[Cohomology of algebras|cohomology of algebras]]. | ||
− | With every pair | + | With every pair $ ( G, A) $, |
+ | where $ G $ | ||
+ | is a group and $ A $ | ||
+ | a left $ G $- | ||
+ | module (that is, a module over the integral group ring $ \mathbf Z G $), | ||
+ | there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $, | ||
+ | called the cohomology groups of $ G $ | ||
+ | with coefficients in $ A $. | ||
+ | The number $ n $, | ||
+ | which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $. | ||
+ | The cohomology groups of groups are important invariants containing information both on the group $ G $ | ||
+ | and on the module $ A $. | ||
− | By definition, | + | By definition, $ H ^ {0} ( G, A) $ |
+ | is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $, | ||
+ | where $ A ^ {G} $ | ||
+ | is the submodule of $ G $- | ||
+ | invariant elements in $ A $. | ||
+ | The groups $ H ^ { n } ( G, A) $, | ||
+ | $ n > 1 $, | ||
+ | are defined as the values of the $ n $- | ||
+ | th [[Derived functor|derived functor]] of the functor $ A \mapsto H ^ {0} ( G, A) $. | ||
+ | Let | ||
− | + | $$ | |
+ | \dots \rightarrow ^ { {d _ n} } \ | ||
+ | P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \ | ||
+ | P _ {n - 1 } \rightarrow \dots \rightarrow \ | ||
+ | P _ {0} \rightarrow \mathbf Z \rightarrow 0 | ||
+ | $$ | ||
− | be some projective [[Resolution|resolution]] of the trivial | + | be some projective [[Resolution|resolution]] of the trivial $ G $- |
+ | module $ \mathbf Z $ | ||
+ | in the category of $ G $- | ||
+ | modules, that is, an exact sequence in which every $ P _ {i} $ | ||
+ | is a projective $ \mathbf Z G $- | ||
+ | module. Then $ H ^ { n } ( G, A) $ | ||
+ | is the $ n $- | ||
+ | th cohomology group of the [[Complex|complex]] | ||
− | + | $$ | |
+ | 0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \ | ||
+ | \mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots , | ||
+ | $$ | ||
− | where | + | where $ d _ {n} ^ { \prime } $ |
+ | is induced by $ d _ {n} $, | ||
+ | that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $. | ||
− | The homology groups of a group are defined using the dual construction, in which | + | The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $ |
+ | is replaced everywhere by $ \otimes _ {G} $. | ||
− | The set of functors | + | The set of functors $ A \mapsto H ^ { n } ( G, A) $, |
+ | $ n = 0, 1 \dots $ | ||
+ | is a cohomological functor (see [[Homology functor|Homology functor]]; [[Cohomology functor|Cohomology functor]]) on the category of left $ G $- | ||
+ | modules. | ||
− | A module of the form | + | A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $, |
+ | where $ X $ | ||
+ | is an Abelian group and $ G $ | ||
+ | acts on $ B $ | ||
+ | according to the formula | ||
− | + | $$ | |
+ | ( g \phi ) ( t) = \ | ||
+ | \phi ( tg),\ \ | ||
+ | \phi \in B,\ \ | ||
+ | t \in \mathbf Z G, | ||
+ | $$ | ||
− | is said to be co-induced. If | + | is said to be co-induced. If $ A $ |
+ | is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $ | ||
+ | for $ n \geq 1 $. | ||
+ | Every module $ A $ | ||
+ | is isomorphic to a submodule of a co-induced module $ B $. | ||
+ | The exact homology sequence for the sequence | ||
− | + | $$ | |
+ | 0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 | ||
+ | $$ | ||
− | then defines isomorphisms | + | then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $, |
+ | $ n \geq 1 $, | ||
+ | and an exact sequence | ||
− | + | $$ | |
+ | B ^ {G} \rightarrow \ | ||
+ | ( B/A) ^ {G} \rightarrow \ | ||
+ | H ^ {1} ( G, A) \rightarrow 0. | ||
+ | $$ | ||
− | Therefore, the computation of the | + | Therefore, the computation of the $ ( n + 1) $- |
+ | dimensional cohomology group of $ A $ | ||
+ | reduces to calculating the $ n $- | ||
+ | dimensional cohomology group of $ B/A $. | ||
+ | This device is called dimension shifting. | ||
− | Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors | + | Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $ |
+ | from the category of $ G $- | ||
+ | modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $, | ||
+ | $ n \geq 1 $, | ||
+ | for every co-induced module $ B $. | ||
− | The groups | + | The groups $ H ^ { n } ( G, A) $ |
+ | can also be defined as equivalence classes of exact sequences of $ G $- | ||
+ | modules of the form | ||
− | + | $$ | |
+ | 0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0 | ||
+ | $$ | ||
with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4). | with respect to a suitably defined equivalence relation (see [[#References|[1]]], Chapt. 3, 4). | ||
− | To compute the cohomology groups, the standard resolution of the trivial | + | To compute the cohomology groups, the standard resolution of the trivial $ G $- |
+ | module $ \mathbf Z $ | ||
+ | is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $ | ||
+ | and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $, | ||
− | + | $$ | |
+ | d _ {n} ( g _ {0} \dots g _ {n} ) = \ | ||
+ | \sum _ {i = 0 } ^ { n } (- 1) ^ {i} | ||
+ | ( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ), | ||
+ | $$ | ||
− | where the symbol | + | where the symbol $ \widehat{ {}} $ |
+ | over $ g _ {i} $ | ||
+ | means that the term $ g _ {i} $ | ||
+ | is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $ | ||
+ | are the functions $ f ( g _ {0} \dots g _ {n} ) $ | ||
+ | for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $. | ||
+ | Changing variables according to the rules $ g _ {0} = 1 $, | ||
+ | $ g _ {1} = h _ {1} $, | ||
+ | $ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $, | ||
+ | one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $. | ||
+ | The coboundary operation then acts as follows: | ||
− | + | $$ | |
+ | d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \ | ||
+ | h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | (- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ). | ||
+ | $$ | ||
− | For example, a one-dimensional cocycle is a function | + | For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $ |
+ | for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $ | ||
+ | for all $ g _ {1} , g _ {2} \in G $, | ||
+ | and a coboundary is a function of the form $ f ( g) = ga - a $ | ||
+ | for some $ a \in A $. | ||
+ | A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $ | ||
+ | acts trivially on $ A $, | ||
+ | crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $ | ||
+ | in this case. | ||
− | The elements of | + | The elements of $ H ^ {1} ( G, A) $ |
+ | can be interpreted as the $ A $- | ||
+ | conjugacy classes of sections $ G \rightarrow F $ | ||
+ | in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $, | ||
+ | where $ F $ | ||
+ | is the [[Semi-direct product|semi-direct product]] of $ G $ | ||
+ | and $ A $. | ||
+ | The elements of $ H ^ {2} ( G, A) $ | ||
+ | can be interpreted as classes of extensions of $ A $ | ||
+ | by $ G $. | ||
+ | Finally, $ H ^ {3} ( G, A) $ | ||
+ | can be interpreted as obstructions to extensions of non-Abelian groups $ H $ | ||
+ | with centre $ A $ | ||
+ | by $ G $( | ||
+ | see [[#References|[1]]]). For $ n > 3 $, | ||
+ | there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $. | ||
− | If | + | If $ H $ |
+ | is a subgroup of $ G $, | ||
+ | then restriction of cocycles from $ G $ | ||
+ | to $ H $ | ||
+ | defines functorial restriction homomorphisms for all $ n $: | ||
− | + | $$ | |
+ | \mathop{\rm res} : \ | ||
+ | H ^ { n } ( G, A) \rightarrow \ | ||
+ | H ^ { n } ( H, A). | ||
+ | $$ | ||
− | For | + | For $ n = 0 $, |
+ | $ \mathop{\rm res} $ | ||
+ | is just the imbedding $ A ^ {G} \subset A ^ {H} $. | ||
+ | If $ G/H $ | ||
+ | is some quotient group of $ G $, | ||
+ | then lifting cocycles from $ G/H $ | ||
+ | to $ G $ | ||
+ | induces the functorial inflation homomorphism | ||
− | + | $$ | |
+ | \inf : \ | ||
+ | H ^ { n } ( G/H,\ | ||
+ | A ^ {H} ) \rightarrow \ | ||
+ | H ^ { n } ( G, A). | ||
+ | $$ | ||
− | Let | + | Let $ \phi : G ^ \prime \rightarrow G $ |
+ | be a homomorphism. Then every $ G $- | ||
+ | module $ A $ | ||
+ | can be regarded as a $ G ^ \prime $- | ||
+ | module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $ | ||
+ | for $ g ^ \prime \in G ^ \prime $. | ||
+ | Combining the mappings $ \mathop{\rm res} $ | ||
+ | and $ \inf $ | ||
+ | gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $. | ||
+ | In this sense $ H ^ {*} ( G, A) $ | ||
+ | is a contravariant functor of $ G $. | ||
+ | If $ \Pi $ | ||
+ | is a group of automorphisms of $ G $, | ||
+ | then $ H ^ { n } ( G, A) $ | ||
+ | can be given the structure of a $ \Pi $- | ||
+ | module. For example, if $ H $ | ||
+ | is a normal subgroup of $ G $, | ||
+ | the groups $ H ^ { n } ( H, A) $ | ||
+ | can be equipped with a natural $ G/H $- | ||
+ | module structure. This is possible thanks to the fact that inner automorphisms of $ G $ | ||
+ | induce the identity mapping on the $ H ^ { n } ( G, A) $. | ||
+ | In particular, for a normal subgroup $ H $ | ||
+ | in $ G $, | ||
+ | $ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $. | ||
− | Let | + | Let $ H $ |
+ | be a subgroup of finite index in the group $ G $. | ||
+ | Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $, | ||
+ | one can use dimension shifting to define the functorial co-restriction mappings for all $ n $: | ||
− | + | $$ | |
+ | \mathop{\rm cores} : \ | ||
+ | H ^ { n } ( H, A) \rightarrow \ | ||
+ | H ^ { n } ( G, A). | ||
+ | $$ | ||
− | These satisfy | + | These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $. |
− | If | + | If $ H $ |
+ | is a normal subgroup of $ G $ | ||
+ | then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $ | ||
+ | converging to the cohomology $ H ^ { n } ( G, A) $( | ||
+ | see [[#References|[1]]], Chapt. 11). In small dimensions it leads to the exact sequence | ||
− | + | $$ | |
+ | 0 \rightarrow H ^ {1} ( G/H, A ^ {H} ) | ||
+ | \mathop \rightarrow \limits ^ { \inf } \ | ||
+ | H ^ {1} ( G, A) | ||
+ | \mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \ | ||
+ | H ^ {1} ( H, A) ^ {G/H} | ||
+ | \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A), | ||
+ | $$ | ||
− | where | + | where $ \mathop{\rm tr} $ |
+ | is the transgression mapping. | ||
− | For a finite group | + | For a finite group $ G $, |
+ | the norm map $ N _ {G} : A \rightarrow A $ | ||
+ | induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $, | ||
+ | where $ H _ {0} ( G, A) = A/J _ {G} A $ | ||
+ | and $ J _ {G} $ | ||
+ | is the ideal of $ \mathbf Z G $ | ||
+ | generated by the elements of the form $ g - 1 $, | ||
+ | $ g \in G $. | ||
+ | The mapping $ N _ {G} $ | ||
+ | can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $ | ||
+ | for all $ n $. | ||
+ | Here | ||
− | + | $$ | |
+ | \widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \ | ||
+ | \textrm{ for } n \geq 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | \widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | \widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} . | ||
+ | $$ | ||
− | For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A | + | For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $- |
+ | module $ A $ | ||
+ | is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $ | ||
+ | for all $ n $ | ||
+ | and all subgroups $ H \subseteq G $. | ||
+ | A module $ A $ | ||
+ | is cohomologically trivial if and only if there is an $ i $ | ||
+ | such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $ | ||
+ | and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $ | ||
+ | for every subgroup $ H \subseteq G $. | ||
+ | Every module $ A $ | ||
+ | is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $ | ||
+ | and $ \mathop{\rm cores} $( | ||
+ | but not $ \inf $) | ||
+ | for all integral $ n $. | ||
+ | For a finitely-generated $ G $- | ||
+ | module $ A $ | ||
+ | the groups $ \widehat{H} {} ^ {n } ( G, A) $ | ||
+ | are finite. | ||
− | The groups | + | The groups $ \widehat{H} {} ^ {n } ( G, A) $ |
+ | are annihilated on multiplication by the order of $ G $, | ||
+ | and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $, | ||
+ | induced by restrictions, is a monomorphism, where now $ G _ {p} $ | ||
+ | is a Sylow $ p $- | ||
+ | subgroup (cf. [[Sylow subgroup|Sylow subgroup]]) of $ G $. | ||
+ | A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $- | ||
+ | groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $ | ||
+ | for all $ n $. | ||
− | For arbitrary integers | + | For arbitrary integers $ m $ |
+ | and $ n $ | ||
+ | there is defined a mapping | ||
− | + | $$ | |
+ | \widehat{H} {} ^ {n } ( G, A) \otimes | ||
+ | \widehat{H} {} ^ {m} ( G, B) \rightarrow \ | ||
+ | \widehat{H} {} ^ {n + m } ( G, A \otimes B), | ||
+ | $$ | ||
− | (called | + | (called $ \cup $- |
+ | product, cup-product), where the tensor product of $ A $ | ||
+ | and $ B $ | ||
+ | is viewed as a $ G $- | ||
+ | module. In the special case where $ A $ | ||
+ | is a ring and the operations in $ G $ | ||
+ | are automorphisms, the $ \cup $- | ||
+ | product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $ | ||
+ | into a graded ring. The duality theorem for $ \cup $- | ||
+ | products asserts that, for every divisible Abelian group $ C $ | ||
+ | and every $ G $- | ||
+ | module $ A $, | ||
+ | the $ \cup $- | ||
+ | product | ||
− | + | $$ | |
+ | \widehat{H} {} ^ {n } ( G, A) \otimes | ||
+ | \widehat{H} {} ^ {- n - 1 } | ||
+ | ( G, \mathop{\rm Hom} ( A, C)) \rightarrow \ | ||
+ | \widehat{H} {} ^ {-} 1 ( G, C) | ||
+ | $$ | ||
− | defines a group isomorphism between | + | defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $ |
+ | and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $( | ||
+ | see [[#References|[2]]]). The $ \cup $- | ||
+ | product is also defined for infinite groups $ G $ | ||
+ | provided that $ n, m > 0 $. | ||
− | Many problems lead to the necessity of considering the cohomology of a topological group | + | Many problems lead to the necessity of considering the cohomology of a topological group $ G $ |
+ | acting continuously on a topological module $ A $. | ||
+ | In particular, if $ G $ | ||
+ | is a [[Profinite group|profinite group]] (the case nearest to that of finite groups) and $ A $ | ||
+ | is a discrete Abelian group that is a continuous $ G $- | ||
+ | module, one can consider the cohomology groups of $ G $ | ||
+ | with coefficients in $ A $, | ||
+ | computed in terms of continuous cochains [[#References|[5]]]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $ | ||
+ | with respect to the inflation mapping, where $ U $ | ||
+ | runs over all open normal subgroups of $ G $. | ||
+ | This cohomology has all the usual properties of the cohomology of finite groups. If $ G $ | ||
+ | is a pro- $ p $- | ||
+ | group, the dimension over $ \mathbf Z /p \mathbf Z $ | ||
+ | of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $ | ||
+ | are interpreted as the minimum number of generators and relations (between these generators) of $ G $, | ||
+ | respectively. | ||
See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group. | See [[#References|[6]]] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See [[Non-Abelian cohomology|Non-Abelian cohomology]] for cohomology with a non-Abelian coefficient group. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967) {{MR|0215665}} {{ZBL|0153.07403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0180551}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> ''Itogi Nauk. Mat. Algebra. 1964'' (1966) pp. 202–235</TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The norm map | + | The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $ |
+ | is defined as follows. Let $ g _ {1} \dots g _ {k} $ | ||
+ | be a set of representatives of $ G/H $ | ||
+ | in $ G $. | ||
+ | Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $ | ||
+ | in $ A ^ {G} $. | ||
+ | For a definition of the transgression relation in general spectral sequences cf. [[Spectral sequence|Spectral sequence]]; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $ | ||
+ | and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $ | ||
+ | for all $ n > 0 $, | ||
+ | cf. also [[#References|[a1]]], Chapt. 11, Par. 9. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.S. Brown, "Cohomology of groups" , Springer (1982) {{MR|0672956}} {{ZBL|0584.20036}} </TD></TR></table> |
Latest revision as of 09:48, 26 March 2023
Historically, the earliest theory of a cohomology of algebras.
With every pair $ ( G, A) $, where $ G $ is a group and $ A $ a left $ G $- module (that is, a module over the integral group ring $ \mathbf Z G $), there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $, called the cohomology groups of $ G $ with coefficients in $ A $. The number $ n $, which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $. The cohomology groups of groups are important invariants containing information both on the group $ G $ and on the module $ A $.
By definition, $ H ^ {0} ( G, A) $ is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $, where $ A ^ {G} $ is the submodule of $ G $- invariant elements in $ A $. The groups $ H ^ { n } ( G, A) $, $ n > 1 $, are defined as the values of the $ n $- th derived functor of the functor $ A \mapsto H ^ {0} ( G, A) $. Let
$$ \dots \rightarrow ^ { {d _ n} } \ P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \ P _ {n - 1 } \rightarrow \dots \rightarrow \ P _ {0} \rightarrow \mathbf Z \rightarrow 0 $$
be some projective resolution of the trivial $ G $- module $ \mathbf Z $ in the category of $ G $- modules, that is, an exact sequence in which every $ P _ {i} $ is a projective $ \mathbf Z G $- module. Then $ H ^ { n } ( G, A) $ is the $ n $- th cohomology group of the complex
$$ 0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \ \mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots , $$
where $ d _ {n} ^ { \prime } $ is induced by $ d _ {n} $, that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $.
The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $ is replaced everywhere by $ \otimes _ {G} $.
The set of functors $ A \mapsto H ^ { n } ( G, A) $, $ n = 0, 1 \dots $ is a cohomological functor (see Homology functor; Cohomology functor) on the category of left $ G $- modules.
A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $, where $ X $ is an Abelian group and $ G $ acts on $ B $ according to the formula
$$ ( g \phi ) ( t) = \ \phi ( tg),\ \ \phi \in B,\ \ t \in \mathbf Z G, $$
is said to be co-induced. If $ A $ is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $ for $ n \geq 1 $. Every module $ A $ is isomorphic to a submodule of a co-induced module $ B $. The exact homology sequence for the sequence
$$ 0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 $$
then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $, $ n \geq 1 $, and an exact sequence
$$ B ^ {G} \rightarrow \ ( B/A) ^ {G} \rightarrow \ H ^ {1} ( G, A) \rightarrow 0. $$
Therefore, the computation of the $ ( n + 1) $- dimensional cohomology group of $ A $ reduces to calculating the $ n $- dimensional cohomology group of $ B/A $. This device is called dimension shifting.
Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $ from the category of $ G $- modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $, $ n \geq 1 $, for every co-induced module $ B $.
The groups $ H ^ { n } ( G, A) $ can also be defined as equivalence classes of exact sequences of $ G $- modules of the form
$$ 0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0 $$
with respect to a suitably defined equivalence relation (see [1], Chapt. 3, 4).
To compute the cohomology groups, the standard resolution of the trivial $ G $- module $ \mathbf Z $ is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $ and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $,
$$ d _ {n} ( g _ {0} \dots g _ {n} ) = \ \sum _ {i = 0 } ^ { n } (- 1) ^ {i} ( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ), $$
where the symbol $ \widehat{ {}} $ over $ g _ {i} $ means that the term $ g _ {i} $ is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $ are the functions $ f ( g _ {0} \dots g _ {n} ) $ for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $. Changing variables according to the rules $ g _ {0} = 1 $, $ g _ {1} = h _ {1} $, $ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $, one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $. The coboundary operation then acts as follows:
$$ d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \ h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) + $$
$$ + \sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) + $$
$$ + (- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ). $$
For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $ for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $ for all $ g _ {1} , g _ {2} \in G $, and a coboundary is a function of the form $ f ( g) = ga - a $ for some $ a \in A $. A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $ acts trivially on $ A $, crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $ in this case.
The elements of $ H ^ {1} ( G, A) $ can be interpreted as the $ A $- conjugacy classes of sections $ G \rightarrow F $ in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $, where $ F $ is the semi-direct product of $ G $ and $ A $. The elements of $ H ^ {2} ( G, A) $ can be interpreted as classes of extensions of $ A $ by $ G $. Finally, $ H ^ {3} ( G, A) $ can be interpreted as obstructions to extensions of non-Abelian groups $ H $ with centre $ A $ by $ G $( see [1]). For $ n > 3 $, there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $.
If $ H $ is a subgroup of $ G $, then restriction of cocycles from $ G $ to $ H $ defines functorial restriction homomorphisms for all $ n $:
$$ \mathop{\rm res} : \ H ^ { n } ( G, A) \rightarrow \ H ^ { n } ( H, A). $$
For $ n = 0 $, $ \mathop{\rm res} $ is just the imbedding $ A ^ {G} \subset A ^ {H} $. If $ G/H $ is some quotient group of $ G $, then lifting cocycles from $ G/H $ to $ G $ induces the functorial inflation homomorphism
$$ \inf : \ H ^ { n } ( G/H,\ A ^ {H} ) \rightarrow \ H ^ { n } ( G, A). $$
Let $ \phi : G ^ \prime \rightarrow G $ be a homomorphism. Then every $ G $- module $ A $ can be regarded as a $ G ^ \prime $- module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $ for $ g ^ \prime \in G ^ \prime $. Combining the mappings $ \mathop{\rm res} $ and $ \inf $ gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $. In this sense $ H ^ {*} ( G, A) $ is a contravariant functor of $ G $. If $ \Pi $ is a group of automorphisms of $ G $, then $ H ^ { n } ( G, A) $ can be given the structure of a $ \Pi $- module. For example, if $ H $ is a normal subgroup of $ G $, the groups $ H ^ { n } ( H, A) $ can be equipped with a natural $ G/H $- module structure. This is possible thanks to the fact that inner automorphisms of $ G $ induce the identity mapping on the $ H ^ { n } ( G, A) $. In particular, for a normal subgroup $ H $ in $ G $, $ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $.
Let $ H $ be a subgroup of finite index in the group $ G $. Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $, one can use dimension shifting to define the functorial co-restriction mappings for all $ n $:
$$ \mathop{\rm cores} : \ H ^ { n } ( H, A) \rightarrow \ H ^ { n } ( G, A). $$
These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $.
If $ H $ is a normal subgroup of $ G $ then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $ converging to the cohomology $ H ^ { n } ( G, A) $( see [1], Chapt. 11). In small dimensions it leads to the exact sequence
$$ 0 \rightarrow H ^ {1} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } \ H ^ {1} ( G, A) \mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \ H ^ {1} ( H, A) ^ {G/H} \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } $$
$$ \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A), $$
where $ \mathop{\rm tr} $ is the transgression mapping.
For a finite group $ G $, the norm map $ N _ {G} : A \rightarrow A $ induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $, where $ H _ {0} ( G, A) = A/J _ {G} A $ and $ J _ {G} $ is the ideal of $ \mathbf Z G $ generated by the elements of the form $ g - 1 $, $ g \in G $. The mapping $ N _ {G} $ can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $ for all $ n $. Here
$$ \widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \ \textrm{ for } n \geq 1, $$
$$ \widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1, $$
$$ \widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} . $$
For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $- module $ A $ is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $ for all $ n $ and all subgroups $ H \subseteq G $. A module $ A $ is cohomologically trivial if and only if there is an $ i $ such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $ and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $ for every subgroup $ H \subseteq G $. Every module $ A $ is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $ and $ \mathop{\rm cores} $( but not $ \inf $) for all integral $ n $. For a finitely-generated $ G $- module $ A $ the groups $ \widehat{H} {} ^ {n } ( G, A) $ are finite.
The groups $ \widehat{H} {} ^ {n } ( G, A) $ are annihilated on multiplication by the order of $ G $, and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $, induced by restrictions, is a monomorphism, where now $ G _ {p} $ is a Sylow $ p $- subgroup (cf. Sylow subgroup) of $ G $. A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $- groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $ for all $ n $.
For arbitrary integers $ m $ and $ n $ there is defined a mapping
$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {m} ( G, B) \rightarrow \ \widehat{H} {} ^ {n + m } ( G, A \otimes B), $$
(called $ \cup $- product, cup-product), where the tensor product of $ A $ and $ B $ is viewed as a $ G $- module. In the special case where $ A $ is a ring and the operations in $ G $ are automorphisms, the $ \cup $- product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $ into a graded ring. The duality theorem for $ \cup $- products asserts that, for every divisible Abelian group $ C $ and every $ G $- module $ A $, the $ \cup $- product
$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) \rightarrow \ \widehat{H} {} ^ {-} 1 ( G, C) $$
defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $ and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $( see [2]). The $ \cup $- product is also defined for infinite groups $ G $ provided that $ n, m > 0 $.
Many problems lead to the necessity of considering the cohomology of a topological group $ G $ acting continuously on a topological module $ A $. In particular, if $ G $ is a profinite group (the case nearest to that of finite groups) and $ A $ is a discrete Abelian group that is a continuous $ G $- module, one can consider the cohomology groups of $ G $ with coefficients in $ A $, computed in terms of continuous cochains [5]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $ with respect to the inflation mapping, where $ U $ runs over all open normal subgroups of $ G $. This cohomology has all the usual properties of the cohomology of finite groups. If $ G $ is a pro- $ p $- group, the dimension over $ \mathbf Z /p \mathbf Z $ of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $ are interpreted as the minimum number of generators and relations (between these generators) of $ G $, respectively.
See [6] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See Non-Abelian cohomology for cohomology with a non-Abelian coefficient group.
References
[1] | S. MacLane, "Homology" , Springer (1963) Zbl 0818.18001 Zbl 0328.18009 |
[2] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305 |
[3] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) MR0215665 Zbl 0153.07403 |
[4] | J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303 |
[5] | H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970) |
[6] | Itogi Nauk. Mat. Algebra. 1964 (1966) pp. 202–235 |
Comments
The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $ is defined as follows. Let $ g _ {1} \dots g _ {k} $ be a set of representatives of $ G/H $ in $ G $. Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $ in $ A ^ {G} $. For a definition of the transgression relation in general spectral sequences cf. Spectral sequence; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $ and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $ for all $ n > 0 $, cf. also [a1], Chapt. 11, Par. 9.
References
[a1] | K.S. Brown, "Cohomology of groups" , Springer (1982) MR0672956 Zbl 0584.20036 |
Cohomology of groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_of_groups&oldid=18938