Difference between revisions of "Invariant metric"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0522601.png | ||
+ | $#A+1 = 149 n = 0 | ||
+ | $#C+1 = 149 : ~/encyclopedia/old_files/data/I052/I.0502260 Invariant metric | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Riemannian metric|Riemannian metric]] $ m $ | |
+ | on a manifold $ M $ | ||
+ | that does not change under any of the transformations of a given Lie group $ G $ | ||
+ | of transformations. The group $ G $ | ||
+ | itself is called a group of motions (isometries) of the metric $ m $( | ||
+ | or of the Riemannian space $ ( M , m ) $). | ||
− | of | + | A Lie group $ G $ |
+ | of transformations of a manifold $ M $ | ||
+ | acting properly on $ M $( | ||
+ | that is, the mapping $ G \times M \rightarrow M \times M $, | ||
+ | $ ( g , x ) \rightarrow ( gx , x ) $ | ||
+ | is proper) has an invariant metric. Conversely, the group of all motions of any Riemannian metric (as well as any closed subgroup of it) is a proper Lie group of transformations. In this case the stabilizer (or isotropy group) | ||
− | + | $$ | |
+ | G _ {x} = \{ {g \in G } : {gx = x } \} | ||
+ | $$ | ||
+ | |||
+ | of any point $ x \in M $ | ||
+ | is a compact subgroup of $ G $. | ||
+ | If $ G $ | ||
+ | itself is compact, then a $ G $- | ||
+ | invariant metric $ m _ {0} $ | ||
+ | can be constructed on $ M $ | ||
+ | by averaging any metric $ m $ | ||
+ | on $ M $ | ||
+ | over $ G $: | ||
+ | |||
+ | $$ | ||
+ | m _ {0} = \int\limits _ { G } ( g ^ {*} m ) dg , | ||
+ | $$ | ||
where the integral is taken with respect to the Haar measure. | where the integral is taken with respect to the Haar measure. | ||
− | If | + | If $ G $ |
+ | is transitive, $ M $ | ||
+ | can be identified with the space of cosets $ G / H $ | ||
+ | of $ G $ | ||
+ | with respect to the stabilizer $ H = G _ {x _ {0} } $ | ||
+ | of a fixed point $ x _ {0} \in M $, | ||
+ | and in order that there exist a $ G $- | ||
+ | invariant metric on $ M $ | ||
+ | it is necessary and sufficient that the linear isotropy group (see [[Isotropy representation|Isotropy representation]]) has compact closure in $ \mathop{\rm GL} ( T _ {x _ {0} } M ) $( | ||
+ | in particular, it is sufficient that $ H $ | ||
+ | be compact). In this case the space $ G / H $ | ||
+ | is reductive, that is, the Lie algebra $ \mathfrak G $ | ||
+ | of $ G $ | ||
+ | admits a decomposition $ \mathfrak G = \mathfrak H + \mathfrak M $, | ||
+ | where $ \mathfrak H $ | ||
+ | is the subalgebra corresponding to $ H $ | ||
+ | and $ \mathfrak M $ | ||
+ | is a subspace that is invariant under $ \mathop{\rm Ad} H $ | ||
+ | where $ \mathop{\rm Ad} $ | ||
+ | is the adjoint representation of $ G $( | ||
+ | cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]). If $ \mathfrak M $ | ||
+ | is identified with $ T _ {x _ {0} } M $, | ||
+ | then any $ G $- | ||
+ | invariant metric $ m $ | ||
+ | on $ M $ | ||
+ | is obtained from some $ \mathop{\rm Ad} H $- | ||
+ | invariant Euclidean metric $ \langle , \rangle $ | ||
+ | on $ \mathfrak M $ | ||
+ | in the following way: | ||
− | + | $$ | |
+ | m _ {x} ( X , Y ) = \langle ( g ^ {*} ) ^ {-1} X, ( g ^ {*} ) ^ {-1} Y \rangle ,\ \ | ||
+ | X , Y \in T _ {x} M , | ||
+ | $$ | ||
− | where | + | where $ g \in G $ |
+ | is such that $ g x _ {0} = x $. | ||
− | The tensor fields associated with a | + | The tensor fields associated with a $ G $- |
+ | invariant metric (the curvature tensor, its covariant derivatives, etc.) are $ G $- | ||
+ | invariant fields. In the case of a homogeneous space $ M = G / H $, | ||
+ | their value at a point $ x _ {0} $ | ||
+ | can be expressed in terms of the Nomizu operator $ L _ {X} \in \mathop{\rm End} ( \mathfrak M ) $, | ||
+ | which is defined by the formula | ||
− | + | $$ | |
+ | L _ {X} Y = - \nabla _ {Y} X ^ {*} = \ | ||
+ | ( {\mathcal L} _ {X ^ {*} } - \nabla _ {X ^ {*} } ) _ {x _ {0} } Y ,\ \ | ||
+ | Y \in \mathfrak M ,\ X \in \mathfrak G , | ||
+ | $$ | ||
− | where | + | where $ X ^ {*} $ |
+ | is the velocity field of the one-parameter group of transformations $ \mathop{\rm exp} tX $, | ||
+ | $ \nabla $ | ||
+ | is the [[Covariant differentiation|covariant differentiation]] operator of the Riemannian connection and $ {\mathcal L} $ | ||
+ | is the [[Lie derivative|Lie derivative]] operator. In particular, the [[Curvature|curvature]] operator $ \mathop{\rm Riem} ( X , Y ) $ | ||
+ | and the [[Sectional curvature|sectional curvature]] $ K ( X, Y ) $ | ||
+ | in the direction given by the orthonormal basis $ X , Y \in M $ | ||
+ | satisfy the following formulas: | ||
− | + | $$ | |
+ | \mathop{\rm Riem} ( X , Y ) = [ L _ {X} , L _ {Y} ] - L _ {[ X , Y ] } , | ||
+ | $$ | ||
− | + | $$ | |
+ | K ( X , Y ) \equiv - \langle \mathop{\rm Riem} ( X , Y ) X , Y \rangle = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \langle L _ {X} Y , L _ {X} Y \rangle - < [ X | ||
+ | , Y ] _ {\mathfrak M } , [ X , Y ] _ {\mathfrak M } > + | ||
+ | $$ | ||
− | + | $$ | |
+ | - \langle [ Y , [ Y , X ] ] _ {\mathfrak M } , X \rangle - \langle L _ {X} X , L _ {Y} Y \rangle , | ||
+ | $$ | ||
− | where | + | where $ Z _ {\mathfrak M } $ |
+ | is the projection of $ Z \in \mathfrak G $ | ||
+ | on $ \mathfrak M $ | ||
+ | along $ \mathfrak H $. | ||
− | The Nomizu operators can be expressed in terms of the Lie algebra | + | The Nomizu operators can be expressed in terms of the Lie algebra $ \mathfrak G $ |
+ | and the metric $ \langle , \rangle $ | ||
+ | by the formula | ||
− | + | $$ | |
+ | 2 \langle L _ {X} Y , Z \rangle = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \langle [ X , Y ] _ {\mathfrak M } , Z \rangle - < X , [ Y ,\ | ||
+ | Z ] _ {\mathfrak M } > - \langle Y , [ X , Z ] _ {\mathfrak M } \rangle , | ||
+ | $$ | ||
− | where | + | where $ X \in \mathfrak G $, |
+ | $ Y , Z \in \mathfrak M $. | ||
+ | It follows from the definition of the Nomizu operators that their action on $ G $- | ||
+ | invariant fields differs only in sign from that of the covariant derivative at the point $ x _ {0} $. | ||
+ | If the Riemannian space $ ( G / H , m) $ | ||
+ | does not contain flat factors in the de Rham decomposition, then the linear Lie algebra generated by the Nomizu operators $ L _ {X} $, | ||
+ | $ X \in \mathfrak G $, | ||
+ | is the same as the holonomy algebra (cf. [[Holonomy group|Holonomy group]]) of the space $ ( G / H , M) $ | ||
+ | at $ x _ {0} $. | ||
− | A description of the geodesics of an invariant metric on a homogeneous space can be given in the following way. Suppose, to begin with, that | + | A description of the geodesics of an invariant metric on a homogeneous space can be given in the following way. Suppose, to begin with, that $ M = G $ |
+ | is a Lie group acting on itself by left translations. Let $ \gamma _ {t} $ | ||
+ | be a left-invariant geodesic of the metric $ m $ | ||
+ | on the Lie group $ G $ | ||
+ | and let $ X _ {t} = \gamma ^ {-1} \dot \gamma _ {t} $ | ||
+ | be the curve in the Lie algebra $ \mathfrak G $ | ||
+ | corresponding to it (the velocity hodograph). The curve $ X _ {t} $ | ||
+ | satisfies the hodograph equation | ||
− | + | $$ | |
+ | \dot{X} _ {t} - L _ {X _ {t} } X _ {t} = \dot{X} _ {t} - | ||
+ | ( \mathop{\rm ad} ^ {*} X _ {t} ) X _ {t} = 0 , | ||
+ | $$ | ||
− | where | + | where $ \mathop{\rm ad} ^ {*} X $ |
+ | is the operator dual to the adjoint representation $ \mathop{\rm ad} X $. | ||
+ | The geodesic $ \gamma _ {t} $ | ||
+ | can be recovered in terms of its velocity hodograph $ X _ {t} $ | ||
+ | from the differential equation $ \dot \gamma _ {t} = \gamma _ {t} X _ {t} $( | ||
+ | which is linear if the group $ G $ | ||
+ | is linear) or from the functional relations | ||
− | + | $$ | |
+ | \langle X _ {t} , ( \mathop{\rm Ad} \gamma ( t) ) Y \rangle = \textrm{ const } ,\ Y \in | ||
+ | \mathfrak G , | ||
+ | $$ | ||
− | giving the first integrals of this equation. Thus, the description of the geodesics of the metric | + | giving the first integrals of this equation. Thus, the description of the geodesics of the metric $ m $ |
+ | reduces to the integration of the hodograph equation, which sometimes can be completely integrated. For example, in the case when the metric $ m $ | ||
+ | is also invariant with respect to right translations, the geodesics passing through the point $ e $ | ||
+ | are the one-parameter subgroups of $ G $. | ||
+ | Such a metric exists on any compact Lie group. In the case of an arbitrary homogeneous space $ M = G / H $ | ||
+ | an invariant metric $ m $ | ||
+ | on $ G / H $ | ||
+ | can be "lifted" to a left-invariant metric $ \widetilde{m} $ | ||
+ | on $ G $ | ||
+ | for which the natural bundle $ G \rightarrow G / H $ | ||
+ | of the Riemannian space $ ( G , \widetilde{m} ) $ | ||
+ | over the Riemannian space $ ( G / H , m ) $ | ||
+ | is a Riemannian bundle, that is, the length of tangent vectors orthogonal to the fibre remains unaltered under projection. For this it is sufficient to extend the metric $ \langle , \rangle $ | ||
+ | to the entire algebra $ \mathfrak G $ | ||
+ | by setting | ||
− | + | $$ | |
+ | \langle \mathfrak H , \mathfrak M \rangle = 0 \ \textrm{ and } \ \langle X , Y \rangle = \ | ||
+ | - \mathop{\rm Tr} L _ {X} L _ {Y} \ ( X , Y \in \mathfrak H ) , | ||
+ | $$ | ||
− | and carrying it over by left translations to a metric | + | and carrying it over by left translations to a metric $ \widetilde{m} $ |
+ | on $ G $. | ||
+ | The geodesics of $ ( G / H , \widetilde{m} ) $ | ||
+ | are projections of geodesics of $ ( G , m ) $ | ||
+ | that are orthogonal to the fibres. | ||
− | Since the function | + | Since the function $ X \rightarrow \langle X , X \rangle $ |
+ | on $ \mathfrak G $ | ||
+ | is always a first integral of the hodograph equation (the energy integral), the corresponding equation of the vector field on $ \mathfrak G $ | ||
+ | is tangent to the spheres $ \langle X , X \rangle = \textrm{ const } $. | ||
+ | This implies the completeness of the hodograph equation and therefore also the completeness of any invariant Riemannian metric on a homogeneous space. For a pseudo-Riemannian metric the completeness property does not hold, in general. On the other hand, any invariant pseudo-Riemannian metric on a compact homogeneous space is complete. | ||
See also [[Symmetric space|Symmetric space]]. | See also [[Symmetric space|Symmetric space]]. | ||
Line 61: | Line 216: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "New methods in general relativity theory" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.A. Wolf, "Spaces of constant curvature" , Publish or Perish (1984)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A. Lichnerowicz, "Geometry of groups of transformations" , Noordhoff (1977) (Translated from French)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "New methods in general relativity theory" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.A. Wolf, "Spaces of constant curvature" , Publish or Perish (1984)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A. Lichnerowicz, "Geometry of groups of transformations" , Noordhoff (1977) (Translated from French)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A de Rham decomposition (of the tangent space | + | A de Rham decomposition (of the tangent space $ T _ {x} M $ |
+ | at a point $ x $) | ||
+ | is defined as follows. Let $ x \in M $, | ||
+ | let $ T _ {x} M $ | ||
+ | be the tangent space at $ x $ | ||
+ | and let $ \Phi _ {x} $ | ||
+ | be the [[Holonomy group|holonomy group]] of the Riemannian connection at $ x $. | ||
+ | The group $ \Phi _ {x} $ | ||
+ | acts on $ T _ {x} M $. | ||
+ | Let $ T _ {x} ^ {(} 0) M $ | ||
+ | be the subspace of tangent vectors that are left invariant under $ \Phi _ {x} $. | ||
+ | Let $ T _ {x} ^ \prime M $ | ||
+ | be the orthogonal complement of $ T _ {x} ^ {(} 0) M $ | ||
+ | in $ T _ {x} M $ | ||
+ | and let $ T _ {x} ^ \prime M = \sum_{i=1} ^ {r} T _ {x} ^ {(} i) M $ | ||
+ | be a decomposition of $ T _ {x} ^ \prime M $ | ||
+ | into mutually-orthogonal invariant irreducible subspaces. The decomposition | ||
− | + | $$ | |
+ | T _ {x} M = \sum_{i=0}^ { r } T _ {x} ^ {(i)} M | ||
+ | $$ | ||
is called a de Rham decomposition or a canonical decomposition. | is called a de Rham decomposition or a canonical decomposition. | ||
− | An irreducible Riemannian manifold is one for which the holonomy group | + | An irreducible Riemannian manifold is one for which the holonomy group $ \Phi _ {x} $ |
+ | acts irreducibly on $ T _ {x} M $( | ||
+ | so that there is only one factor in the Rham decomposition of $ T _ {x} M $). | ||
− | The de Rham decomposition theorem says that a connected simply-connected complete Riemannian manifold | + | The de Rham decomposition theorem says that a connected simply-connected complete Riemannian manifold $ M $ |
+ | is isometric to a direct product $ M _ {0} \times M _ {1} \times \dots \times M _ {r} $ | ||
+ | where $ M _ {0} $ | ||
+ | is a Euclidean space (possibly of dimension zero) and where the $ M _ {1} \dots M _ {r} $ | ||
+ | are all simply-connected complete irreducible Riemannian manifolds. Such a decomposition is unique up to the order of the factors, [[#References|[a1]]], Sect. IV. 6. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Interscience (1963)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1''' , Interscience (1963)</TD></TR></table> |
Latest revision as of 19:04, 9 January 2024
A Riemannian metric $ m $
on a manifold $ M $
that does not change under any of the transformations of a given Lie group $ G $
of transformations. The group $ G $
itself is called a group of motions (isometries) of the metric $ m $(
or of the Riemannian space $ ( M , m ) $).
A Lie group $ G $ of transformations of a manifold $ M $ acting properly on $ M $( that is, the mapping $ G \times M \rightarrow M \times M $, $ ( g , x ) \rightarrow ( gx , x ) $ is proper) has an invariant metric. Conversely, the group of all motions of any Riemannian metric (as well as any closed subgroup of it) is a proper Lie group of transformations. In this case the stabilizer (or isotropy group)
$$ G _ {x} = \{ {g \in G } : {gx = x } \} $$
of any point $ x \in M $ is a compact subgroup of $ G $. If $ G $ itself is compact, then a $ G $- invariant metric $ m _ {0} $ can be constructed on $ M $ by averaging any metric $ m $ on $ M $ over $ G $:
$$ m _ {0} = \int\limits _ { G } ( g ^ {*} m ) dg , $$
where the integral is taken with respect to the Haar measure.
If $ G $ is transitive, $ M $ can be identified with the space of cosets $ G / H $ of $ G $ with respect to the stabilizer $ H = G _ {x _ {0} } $ of a fixed point $ x _ {0} \in M $, and in order that there exist a $ G $- invariant metric on $ M $ it is necessary and sufficient that the linear isotropy group (see Isotropy representation) has compact closure in $ \mathop{\rm GL} ( T _ {x _ {0} } M ) $( in particular, it is sufficient that $ H $ be compact). In this case the space $ G / H $ is reductive, that is, the Lie algebra $ \mathfrak G $ of $ G $ admits a decomposition $ \mathfrak G = \mathfrak H + \mathfrak M $, where $ \mathfrak H $ is the subalgebra corresponding to $ H $ and $ \mathfrak M $ is a subspace that is invariant under $ \mathop{\rm Ad} H $ where $ \mathop{\rm Ad} $ is the adjoint representation of $ G $( cf. Adjoint representation of a Lie group). If $ \mathfrak M $ is identified with $ T _ {x _ {0} } M $, then any $ G $- invariant metric $ m $ on $ M $ is obtained from some $ \mathop{\rm Ad} H $- invariant Euclidean metric $ \langle , \rangle $ on $ \mathfrak M $ in the following way:
$$ m _ {x} ( X , Y ) = \langle ( g ^ {*} ) ^ {-1} X, ( g ^ {*} ) ^ {-1} Y \rangle ,\ \ X , Y \in T _ {x} M , $$
where $ g \in G $ is such that $ g x _ {0} = x $.
The tensor fields associated with a $ G $- invariant metric (the curvature tensor, its covariant derivatives, etc.) are $ G $- invariant fields. In the case of a homogeneous space $ M = G / H $, their value at a point $ x _ {0} $ can be expressed in terms of the Nomizu operator $ L _ {X} \in \mathop{\rm End} ( \mathfrak M ) $, which is defined by the formula
$$ L _ {X} Y = - \nabla _ {Y} X ^ {*} = \ ( {\mathcal L} _ {X ^ {*} } - \nabla _ {X ^ {*} } ) _ {x _ {0} } Y ,\ \ Y \in \mathfrak M ,\ X \in \mathfrak G , $$
where $ X ^ {*} $ is the velocity field of the one-parameter group of transformations $ \mathop{\rm exp} tX $, $ \nabla $ is the covariant differentiation operator of the Riemannian connection and $ {\mathcal L} $ is the Lie derivative operator. In particular, the curvature operator $ \mathop{\rm Riem} ( X , Y ) $ and the sectional curvature $ K ( X, Y ) $ in the direction given by the orthonormal basis $ X , Y \in M $ satisfy the following formulas:
$$ \mathop{\rm Riem} ( X , Y ) = [ L _ {X} , L _ {Y} ] - L _ {[ X , Y ] } , $$
$$ K ( X , Y ) \equiv - \langle \mathop{\rm Riem} ( X , Y ) X , Y \rangle = $$
$$ = \ \langle L _ {X} Y , L _ {X} Y \rangle - < [ X , Y ] _ {\mathfrak M } , [ X , Y ] _ {\mathfrak M } > + $$
$$ - \langle [ Y , [ Y , X ] ] _ {\mathfrak M } , X \rangle - \langle L _ {X} X , L _ {Y} Y \rangle , $$
where $ Z _ {\mathfrak M } $ is the projection of $ Z \in \mathfrak G $ on $ \mathfrak M $ along $ \mathfrak H $.
The Nomizu operators can be expressed in terms of the Lie algebra $ \mathfrak G $ and the metric $ \langle , \rangle $ by the formula
$$ 2 \langle L _ {X} Y , Z \rangle = $$
$$ = \ \langle [ X , Y ] _ {\mathfrak M } , Z \rangle - < X , [ Y ,\ Z ] _ {\mathfrak M } > - \langle Y , [ X , Z ] _ {\mathfrak M } \rangle , $$
where $ X \in \mathfrak G $, $ Y , Z \in \mathfrak M $. It follows from the definition of the Nomizu operators that their action on $ G $- invariant fields differs only in sign from that of the covariant derivative at the point $ x _ {0} $. If the Riemannian space $ ( G / H , m) $ does not contain flat factors in the de Rham decomposition, then the linear Lie algebra generated by the Nomizu operators $ L _ {X} $, $ X \in \mathfrak G $, is the same as the holonomy algebra (cf. Holonomy group) of the space $ ( G / H , M) $ at $ x _ {0} $.
A description of the geodesics of an invariant metric on a homogeneous space can be given in the following way. Suppose, to begin with, that $ M = G $ is a Lie group acting on itself by left translations. Let $ \gamma _ {t} $ be a left-invariant geodesic of the metric $ m $ on the Lie group $ G $ and let $ X _ {t} = \gamma ^ {-1} \dot \gamma _ {t} $ be the curve in the Lie algebra $ \mathfrak G $ corresponding to it (the velocity hodograph). The curve $ X _ {t} $ satisfies the hodograph equation
$$ \dot{X} _ {t} - L _ {X _ {t} } X _ {t} = \dot{X} _ {t} - ( \mathop{\rm ad} ^ {*} X _ {t} ) X _ {t} = 0 , $$
where $ \mathop{\rm ad} ^ {*} X $ is the operator dual to the adjoint representation $ \mathop{\rm ad} X $. The geodesic $ \gamma _ {t} $ can be recovered in terms of its velocity hodograph $ X _ {t} $ from the differential equation $ \dot \gamma _ {t} = \gamma _ {t} X _ {t} $( which is linear if the group $ G $ is linear) or from the functional relations
$$ \langle X _ {t} , ( \mathop{\rm Ad} \gamma ( t) ) Y \rangle = \textrm{ const } ,\ Y \in \mathfrak G , $$
giving the first integrals of this equation. Thus, the description of the geodesics of the metric $ m $ reduces to the integration of the hodograph equation, which sometimes can be completely integrated. For example, in the case when the metric $ m $ is also invariant with respect to right translations, the geodesics passing through the point $ e $ are the one-parameter subgroups of $ G $. Such a metric exists on any compact Lie group. In the case of an arbitrary homogeneous space $ M = G / H $ an invariant metric $ m $ on $ G / H $ can be "lifted" to a left-invariant metric $ \widetilde{m} $ on $ G $ for which the natural bundle $ G \rightarrow G / H $ of the Riemannian space $ ( G , \widetilde{m} ) $ over the Riemannian space $ ( G / H , m ) $ is a Riemannian bundle, that is, the length of tangent vectors orthogonal to the fibre remains unaltered under projection. For this it is sufficient to extend the metric $ \langle , \rangle $ to the entire algebra $ \mathfrak G $ by setting
$$ \langle \mathfrak H , \mathfrak M \rangle = 0 \ \textrm{ and } \ \langle X , Y \rangle = \ - \mathop{\rm Tr} L _ {X} L _ {Y} \ ( X , Y \in \mathfrak H ) , $$
and carrying it over by left translations to a metric $ \widetilde{m} $ on $ G $. The geodesics of $ ( G / H , \widetilde{m} ) $ are projections of geodesics of $ ( G , m ) $ that are orthogonal to the fibres.
Since the function $ X \rightarrow \langle X , X \rangle $ on $ \mathfrak G $ is always a first integral of the hodograph equation (the energy integral), the corresponding equation of the vector field on $ \mathfrak G $ is tangent to the spheres $ \langle X , X \rangle = \textrm{ const } $. This implies the completeness of the hodograph equation and therefore also the completeness of any invariant Riemannian metric on a homogeneous space. For a pseudo-Riemannian metric the completeness property does not hold, in general. On the other hand, any invariant pseudo-Riemannian metric on a compact homogeneous space is complete.
See also Symmetric space.
References
[1] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
[2] | A.Z. Petrov, "New methods in general relativity theory" , Moscow (1966) (In Russian) |
[3] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969) |
[4] | S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) |
[5] | J.A. Wolf, "Spaces of constant curvature" , Publish or Perish (1984) |
[6] | A. Lichnerowicz, "Geometry of groups of transformations" , Noordhoff (1977) (Translated from French) |
[7] | A.L. Besse, "Einstein manifolds" , Springer (1987) |
Comments
A de Rham decomposition (of the tangent space $ T _ {x} M $ at a point $ x $) is defined as follows. Let $ x \in M $, let $ T _ {x} M $ be the tangent space at $ x $ and let $ \Phi _ {x} $ be the holonomy group of the Riemannian connection at $ x $. The group $ \Phi _ {x} $ acts on $ T _ {x} M $. Let $ T _ {x} ^ {(} 0) M $ be the subspace of tangent vectors that are left invariant under $ \Phi _ {x} $. Let $ T _ {x} ^ \prime M $ be the orthogonal complement of $ T _ {x} ^ {(} 0) M $ in $ T _ {x} M $ and let $ T _ {x} ^ \prime M = \sum_{i=1} ^ {r} T _ {x} ^ {(} i) M $ be a decomposition of $ T _ {x} ^ \prime M $ into mutually-orthogonal invariant irreducible subspaces. The decomposition
$$ T _ {x} M = \sum_{i=0}^ { r } T _ {x} ^ {(i)} M $$
is called a de Rham decomposition or a canonical decomposition.
An irreducible Riemannian manifold is one for which the holonomy group $ \Phi _ {x} $ acts irreducibly on $ T _ {x} M $( so that there is only one factor in the Rham decomposition of $ T _ {x} M $).
The de Rham decomposition theorem says that a connected simply-connected complete Riemannian manifold $ M $ is isometric to a direct product $ M _ {0} \times M _ {1} \times \dots \times M _ {r} $ where $ M _ {0} $ is a Euclidean space (possibly of dimension zero) and where the $ M _ {1} \dots M _ {r} $ are all simply-connected complete irreducible Riemannian manifolds. Such a decomposition is unique up to the order of the factors, [a1], Sect. IV. 6.
References
[a1] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963) |
Invariant metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_metric&oldid=18868