|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | p0759101.png |
| + | $#A+1 = 68 n = 0 |
| + | $#C+1 = 68 : ~/encyclopedia/old_files/data/P075/P.0705910 Pure submodule |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''in the sense of Cohn'' | | ''in the sense of Cohn'' |
| | | |
− | A submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759101.png" /> of a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759102.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759103.png" /> such that for any left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759104.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759105.png" /> the natural homomorphism of Abelian groups | + | A submodule $ A $ |
| + | of a right $ R $- |
| + | module $ B $ |
| + | such that for any left $ R $- |
| + | module $ C $ |
| + | the natural homomorphism of Abelian groups |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759106.png" /></td> </tr></table>
| + | $$ |
| + | A \otimes _ {R} C \rightarrow B \otimes _ {R} C |
| + | $$ |
| | | |
| is injective. This is equivalent to the following condition: If the system of equations | | is injective. This is equivalent to the following condition: If the system of equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759107.png" /></td> </tr></table>
| + | $$ |
− | | + | \sum_{i=1} ^ { n } x _ {i} \lambda _ {ij} = a _ {j} ,\ \ |
− | has a solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759108.png" />, then it has a solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p0759109.png" /> (cf. [[Flat module|Flat module]]). Any direct summand is a pure submodule. All submodules of a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591010.png" />-module are pure if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591011.png" /> is a [[Regular ring (in the sense of von Neumann)|regular ring (in the sense of von Neumann)]].
| + | 1 \leq j \leq m ,\ \ |
− | | + | \lambda _ {ij} \in R ,\ a _ {j} \in A , |
− | In the case of Abelian groups (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591012.png" />), the following assertions are equivalent: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591013.png" /> is a pure (or serving) subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591014.png" /> (cf. [[Pure subgroup|Pure subgroup]]); 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591015.png" /> for every natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591016.png" />; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591017.png" /> is a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591018.png" /> for every natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591019.png" />; 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591021.png" /> is a finitely-generated group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591022.png" /> is a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591023.png" />; 5) every residue class in the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591024.png" /> contains an element of the same order as the residue class; and 6) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591026.png" /> is finitely generated, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591027.png" /> is a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591028.png" />. If property 2) is required to hold only for prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591030.png" /> is called a weakly-pure subgroup.
| + | $$ |
− | | |
− | The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591031.png" /> subject to the following conditions (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591032.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591033.png" /> is a submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591034.png" /> and that the natural imbedding belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591035.png" />): P0') if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591036.png" /> is a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591038.png" />; P1') if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591041.png" />; P2') if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591044.png" />; P3') if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591046.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591047.png" />; and P4') if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591051.png" />. Taking the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591052.png" /> instead of the class of all monomorphisms leads to [[Relative homological algebra|relative homological algebra]]. For example, a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591053.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591055.png" />-injective if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591056.png" /> implies that any homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591057.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591058.png" /> can be extended to a homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591059.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591060.png" /> (cf. [[Injective module|Injective module]]). A pure injective Abelian group is called algebraically compact. The following conditions on an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591061.png" /> are equivalent: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591062.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591063.png" /> is algebraically compact; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591064.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591065.png" /> splits as a direct summand of any group that contains it as a pure subgroup; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591066.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591067.png" /> is a direct summand of a group that admits a compact topology; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591068.png" />) a system of equations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075910/p07591069.png" /> is solvable if every finite subsystem of it is solvable.
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.G. Sklyarenko, "Relative homological algebra in categories of modules" ''Russian Math. Surveys'' , '''33''' : 3 (1978) pp. 97–137 ''Uspekhi Mat. Nauk'' , '''33''' : 3 (1978) pp. 85–120</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Fuchs, "Infinite abelian groups" , '''1–2''' , Acad. Press (1970–1973)</TD></TR></table>
| |
− | | |
| | | |
| + | has a solution in $ B $, |
| + | then it has a solution in $ A $( |
| + | cf. [[Flat module|Flat module]]). Any direct summand is a pure submodule. All submodules of a right $ R $- |
| + | module are pure if and only if $ R $ |
| + | is a [[Regular ring (in the sense of von Neumann)|regular ring (in the sense of von Neumann)]]. |
| | | |
− | ====Comments==== | + | In the case of Abelian groups (that is, $ R = \mathbf Z $), |
| + | the following assertions are equivalent: 1) $ A $ |
| + | is a pure (or serving) subgroup of $ B $( |
| + | cf. [[Pure subgroup|Pure subgroup]]); 2) $ n A = A \cap n B $ |
| + | for every natural number $ n $; |
| + | 3) $ A / n A $ |
| + | is a direct summand of $ B / n A $ |
| + | for every natural number $ n $; |
| + | 4) if $ C \subseteq A $ |
| + | and $ A / C $ |
| + | is a finitely-generated group, then $ A/C $ |
| + | is a direct summand of $ B/C $; |
| + | 5) every residue class in the quotient group $ B / A $ |
| + | contains an element of the same order as the residue class; and 6) if $ A \subseteq C \subseteq B $ |
| + | and $ C / A $ |
| + | is finitely generated, then $ A $ |
| + | is a direct summand of $ C $. |
| + | If property 2) is required to hold only for prime numbers $ n $, |
| + | then $ A $ |
| + | is called a weakly-pure subgroup. |
| | | |
| + | The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism $ \mathfrak K _ \omega $ |
| + | subject to the following conditions (here $ A \subseteq _ \omega B $ |
| + | means that $ A $ |
| + | is a submodule of $ B $ |
| + | and that the natural imbedding belongs to $ \mathfrak K _ \omega $): |
| + | P0') if $ A $ |
| + | is a direct summand of $ B $, |
| + | then $ A \subseteq _ \omega B $; |
| + | P1') if $ A \subseteq _ \omega B $ |
| + | and $ B \subseteq _ \omega C $, |
| + | then $ A \subseteq _ \omega C $; |
| + | P2') if $ A \subseteq B \subseteq C $ |
| + | and $ A \subseteq _ \omega C $, |
| + | then $ A \subseteq _ \omega B $; |
| + | P3') if $ A \subseteq _ \omega B $ |
| + | and $ K \subseteq A $, |
| + | then $ A / K \subseteq _ \omega B / K $; |
| + | and P4') if $ K \subseteq B $, |
| + | $ K \subseteq _ \omega B $ |
| + | and $ A / K \subseteq _ \omega B / K $, |
| + | then $ A \subseteq _ \omega B $. |
| + | Taking the class $ \mathfrak K _ \omega $ |
| + | instead of the class of all monomorphisms leads to [[Relative homological algebra|relative homological algebra]]. For example, a module $ Q $ |
| + | is called $ \omega $- |
| + | injective if $ A \subseteq _ \omega B $ |
| + | implies that any homomorphism from $ A $ |
| + | into $ Q $ |
| + | can be extended to a homomorphism from $ B $ |
| + | into $ Q $( |
| + | cf. [[Injective module|Injective module]]). A pure injective Abelian group is called algebraically compact. The following conditions on an Abelian group $ Q $ |
| + | are equivalent: $ \alpha $) |
| + | $ Q $ |
| + | is algebraically compact; $ \beta $) |
| + | $ Q $ |
| + | splits as a direct summand of any group that contains it as a pure subgroup; $ \gamma $) |
| + | $ Q $ |
| + | is a direct summand of a group that admits a compact topology; and $ \delta $) |
| + | a system of equations over $ Q $ |
| + | is solvable if every finite subsystem of it is solvable. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Rotman, "Introduction to homological algebra" , Acad. Press (1979)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> E.G. Sklyarenko, "Relative homological algebra in categories of modules" ''Russian Math. Surveys'' , '''33''' : 3 (1978) pp. 97–137 ''Uspekhi Mat. Nauk'' , '''33''' : 3 (1978) pp. 85–120</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> L. Fuchs, "Infinite abelian groups" , '''1–2''' , Acad. Press (1970–1973)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Rotman, "Introduction to homological algebra" , Acad. Press (1979)</TD></TR> |
| + | </table> |
in the sense of Cohn
A submodule $ A $
of a right $ R $-
module $ B $
such that for any left $ R $-
module $ C $
the natural homomorphism of Abelian groups
$$
A \otimes _ {R} C \rightarrow B \otimes _ {R} C
$$
is injective. This is equivalent to the following condition: If the system of equations
$$
\sum_{i=1} ^ { n } x _ {i} \lambda _ {ij} = a _ {j} ,\ \
1 \leq j \leq m ,\ \
\lambda _ {ij} \in R ,\ a _ {j} \in A ,
$$
has a solution in $ B $,
then it has a solution in $ A $(
cf. Flat module). Any direct summand is a pure submodule. All submodules of a right $ R $-
module are pure if and only if $ R $
is a regular ring (in the sense of von Neumann).
In the case of Abelian groups (that is, $ R = \mathbf Z $),
the following assertions are equivalent: 1) $ A $
is a pure (or serving) subgroup of $ B $(
cf. Pure subgroup); 2) $ n A = A \cap n B $
for every natural number $ n $;
3) $ A / n A $
is a direct summand of $ B / n A $
for every natural number $ n $;
4) if $ C \subseteq A $
and $ A / C $
is a finitely-generated group, then $ A/C $
is a direct summand of $ B/C $;
5) every residue class in the quotient group $ B / A $
contains an element of the same order as the residue class; and 6) if $ A \subseteq C \subseteq B $
and $ C / A $
is finitely generated, then $ A $
is a direct summand of $ C $.
If property 2) is required to hold only for prime numbers $ n $,
then $ A $
is called a weakly-pure subgroup.
The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism $ \mathfrak K _ \omega $
subject to the following conditions (here $ A \subseteq _ \omega B $
means that $ A $
is a submodule of $ B $
and that the natural imbedding belongs to $ \mathfrak K _ \omega $):
P0') if $ A $
is a direct summand of $ B $,
then $ A \subseteq _ \omega B $;
P1') if $ A \subseteq _ \omega B $
and $ B \subseteq _ \omega C $,
then $ A \subseteq _ \omega C $;
P2') if $ A \subseteq B \subseteq C $
and $ A \subseteq _ \omega C $,
then $ A \subseteq _ \omega B $;
P3') if $ A \subseteq _ \omega B $
and $ K \subseteq A $,
then $ A / K \subseteq _ \omega B / K $;
and P4') if $ K \subseteq B $,
$ K \subseteq _ \omega B $
and $ A / K \subseteq _ \omega B / K $,
then $ A \subseteq _ \omega B $.
Taking the class $ \mathfrak K _ \omega $
instead of the class of all monomorphisms leads to relative homological algebra. For example, a module $ Q $
is called $ \omega $-
injective if $ A \subseteq _ \omega B $
implies that any homomorphism from $ A $
into $ Q $
can be extended to a homomorphism from $ B $
into $ Q $(
cf. Injective module). A pure injective Abelian group is called algebraically compact. The following conditions on an Abelian group $ Q $
are equivalent: $ \alpha $)
$ Q $
is algebraically compact; $ \beta $)
$ Q $
splits as a direct summand of any group that contains it as a pure subgroup; $ \gamma $)
$ Q $
is a direct summand of a group that admits a compact topology; and $ \delta $)
a system of equations over $ Q $
is solvable if every finite subsystem of it is solvable.
References
[1] | A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian) |
[2] | E.G. Sklyarenko, "Relative homological algebra in categories of modules" Russian Math. Surveys , 33 : 3 (1978) pp. 97–137 Uspekhi Mat. Nauk , 33 : 3 (1978) pp. 85–120 |
[3] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
[4] | L. Fuchs, "Infinite abelian groups" , 1–2 , Acad. Press (1970–1973) |
[a1] | J. Rotman, "Introduction to homological algebra" , Acad. Press (1979) |