|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ''in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752501.png" /> variables over a [[Skew-field|skew-field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752502.png" />''
| + | {{MSC|20}} |
| + | {{TEX|done}} |
| | | |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752503.png" /> of transformations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752504.png" />-dimensional [[Projective space|projective space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752505.png" /> induced by the linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752506.png" />. There is a natural [[Epimorphism|epimorphism]]
| + | ''in $n$ variables over a |
| + | [[Skew-field|skew-field]] $K$'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752507.png" /></td> </tr></table>
| + | The group $\def\PGL{ {\rm PGL}}\PGL_n(K)$ of transformations of the $(n-1)$-dimensional |
| + | [[Projective space|projective space]] $P^{n-1}(K)$ induced by the linear transformations of $K^n$. There is a natural |
| + | [[Epimorphism|epimorphism]] |
| + | $$P: {\rm GL}_n(K)\to \PGL_n(K),$$ |
| + | with as kernel the group of homotheties (cf. |
| + | [[Homothety|Homothety]]) of $K^n$, which is isomorphic to the multiplicative group $Z^*$ of the centre $Z$ of $K$. The elements of $\PGL_n(K)$, called projective transformations, are the collineations (cf. |
| + | [[Collineation|Collineation]]) of $P^{n-1}(K)$. Along with |
| + | $\PGL_n(K)$, which is also called the full projective group, one also |
| + | considers the unimodular projective group $\def\PSL{ {\rm |
| + | PSL}}\PSL_n(K)$, and, in general, groups of the form $P(G) \subset \PGL_n(K)$, where $G |
| + | \subset {\rm GL}_n(K)$ is a |
| + | [[Linear group|linear group]]. |
| | | |
− | with as kernel the group of homotheties (cf. [[Homothety|Homothety]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752508.png" />, which is isomorphic to the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p0752509.png" /> of the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525011.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525012.png" />, called projective transformations, are the collineations (cf. [[Collineation|Collineation]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525013.png" />. Along with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525014.png" />, which is also called the full projective group, one also considers the unimodular projective group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525015.png" />, and, in general, groups of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525017.png" /> is a [[Linear group|linear group]].
| + | For $n\ge 2$ the group $\PSL_n(K)$ is simple, except for the two cases $n=2$ and $|K|=2$ or 3. If $K$ is the finite field of $q$ elements, then |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525018.png" /> the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525019.png" /> is simple, except for the two cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525021.png" /> or 3. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525022.png" /> is the finite field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525023.png" /> elements, then
| + | $$|\PSL_n(K)| = (q-1,n)^{-1} q^{n(n-1)/2} (q^n-1)(q^{n-1}-1)\cdots (q^2-1).$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525024.png" /></td> </tr></table>
| + | For a brief resumé on the orders of the other finite classical groups, like ${\rm PSp}_n$, and their simplicity cf. e.g. |
| + | {{Cite|Ca}}. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525025.png" /></td> </tr></table>
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1955)</TD></TR></table>
| + | {| |
− | | + | |- |
− | | + | |valign="top"|{{Ref|Ca}}||valign="top"| R.W. Carter, "Simple groups of Lie type", Wiley (Interscience) (1972) pp. Chapt. 1 {{MR|0407163}} {{ZBL|0248.20015}} |
− | | + | |- |
− | ====Comments====
| + | |valign="top"|{{Ref|Di}}||valign="top"| J.A. Dieudonné, "La géométrie des groupes classiques", Springer (1955) {{MR|0072144}} {{ZBL|0067.26104}} |
− | The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525026.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525027.png" /> are the images of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525028.png" /> under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525029.png" />. For a brief resumé on the orders of the other finite classical groups, like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075250/p07525030.png" />, and their simplicity cf. e.g. [[#References|[a1]]].
| + | |- |
− | | + | |} |
− | ====References====
| |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972) pp. Chapt. 1</TD></TR></table>
| |
2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]
in $n$ variables over a
skew-field $K$
The group $\def\PGL{ {\rm PGL}}\PGL_n(K)$ of transformations of the $(n-1)$-dimensional
projective space $P^{n-1}(K)$ induced by the linear transformations of $K^n$. There is a natural
epimorphism
$$P: {\rm GL}_n(K)\to \PGL_n(K),$$
with as kernel the group of homotheties (cf.
Homothety) of $K^n$, which is isomorphic to the multiplicative group $Z^*$ of the centre $Z$ of $K$. The elements of $\PGL_n(K)$, called projective transformations, are the collineations (cf.
Collineation) of $P^{n-1}(K)$. Along with
$\PGL_n(K)$, which is also called the full projective group, one also
considers the unimodular projective group $\def\PSL{ {\rm
PSL}}\PSL_n(K)$, and, in general, groups of the form $P(G) \subset \PGL_n(K)$, where $G
\subset {\rm GL}_n(K)$ is a
linear group.
For $n\ge 2$ the group $\PSL_n(K)$ is simple, except for the two cases $n=2$ and $|K|=2$ or 3. If $K$ is the finite field of $q$ elements, then
$$|\PSL_n(K)| = (q-1,n)^{-1} q^{n(n-1)/2} (q^n-1)(q^{n-1}-1)\cdots (q^2-1).$$
For a brief resumé on the orders of the other finite classical groups, like ${\rm PSp}_n$, and their simplicity cf. e.g.
[Ca].
References