|
|
(10 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Baxter algebras originated in the following problem in fluctuation theory: Find the distribution functions of the maxima <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300801.png" /> of the partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300802.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300804.png" /> of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300805.png" /> of independent identically-distributed random variables (cf. also [[Random variable|Random variable]]). A central result in this area is the Spitzer identity | + | Baxter algebras originated in the following problem in fluctuation theory: Find the distribution functions of the maxima $\max\{0, S_1, \ldots, S_n \}$ of the partial sums $S_0 = 0$, $S_1=X_1$, $S_2=X_1 + X_2$, $\ldots$, $S_n = X_1+\cdots+X_n$, of a sequence $X_i$ of independent identically-distributed [[random variable]]s. A central result in this area is the ''Spitzer identity'' |
| + | $$ |
| + | \sum_{n=0}^\infty \phi_n(t) \lambda^n = \exp\left[{ \sum_{k=1}^\infty \psi_k(t) \frac{\lambda^k}{k} }\right]\ , |
| + | $$ |
| + | where $\phi_n(t)$ is the [[characteristic function]] of $\max\{0, S_1, \ldots, S_n \}$ and $\psi_k(t)$ is the characteristic function of $\max\{0, S_k \}$. Spitzer's identity bears an remarkable resemblance to the ''Waring identity'' |
| + | $$ |
| + | \sum_{n=0}^\infty e_n(x_1,x_2,\ldots) \lambda^n = \exp\left[{ -\sum_{k=1}^\infty (-1)^k p_k(x_1,x_2,\ldots) \frac{\lambda^k}{k} }\right] |
| + | $$ |
| + | where $e_n(x_1,x_2,\ldots)$ are [[elementary symmetric function]]s and $p_k(x_1,x_2,\ldots)$ are power sum symmetric functions. The algebraic structure underlying both identities is a Baxter algebra. These algebras were defined by G.-C. Rota in [[#References|[a2]]], [[#References|[a3]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300806.png" /></td> </tr></table>
| + | A Baxter operator $P$ on an [[algebra]] $A$ over a field $k$ is a [[linear operator]] from $A$ to itself satisfying the identity |
| + | $$\label{eq:a1} |
| + | P(xPy) + P(yPx) = (Px)(Py) + q P(xy) |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300807.png" /> is the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b1300809.png" /> is the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008010.png" />. Spitzer's identity bears an uncanny resemblance to the Waring identity | + | where $q$ is a constant in $k$. A '''Baxter algebra''' is an algebra with a Baxter operator. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008011.png" /></td> </tr></table>
| + | An example is the algebra of real-valued continuous functions on the interval $[0,1]$ with the integration operator |
| + | $$ |
| + | Pf(x) = \int_0^x f(t) dt \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008012.png" /></td> </tr></table>
| + | The formula for [[integration by parts]] is identity (a1) with $q=0$. |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008013.png" /> are elementary symmetric functions and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008014.png" /> are power sum symmetric functions. The algebraic structure underlying both identities is a Baxter algebra. These algebras were defined by G.-C. Rota in [[#References|[a2]]], [[#References|[a3]]].
| |
− | | |
− | A Baxter operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008015.png" /> on an [[Algebra|algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008016.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008017.png" /> is a [[Linear operator|linear operator]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008018.png" /> to itself satisfying the identity
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008020.png" /> is a constant in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008021.png" />. A Baxter algebra is an algebra with a Baxter operator.
| |
− | | |
− | An example is the algebra of real-valued continuous functions on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008022.png" /> with the integration operator
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008023.png" /></td> </tr></table>
| |
− | | |
− | The formula for [[Integration by parts|integration by parts]] is identity (a1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008024.png" />. | |
− | | |
− | Another example is the [[Banach algebra|Banach algebra]] of characteristic functions of distribution functions of random variables (cf. also [[Characteristic function|Characteristic function]]; [[Random variable|Random variable]]) with the Baxter operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008025.png" /> which sends the characteristic function of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008026.png" /> to the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008027.png" />. That is, if
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008028.png" /></td> </tr></table>
| |
| | | |
| + | Another example is the [[Banach algebra]] of characteristic functions of distribution functions of random variables (cf. also [[Characteristic function]]; [[Random variable]]) with the Baxter operator $P$ which sends the characteristic function of a random variable $X$ to the characteristic function of $\max\{0,X\}$. That is, if |
| + | $$ |
| + | \xi(t) = \int_{-\infty}^\infty \exp(itx) dF(x) |
| + | $$ |
| then | | then |
| + | $$\label{eq:a2} |
| + | P\xi(t) = \int_0^\infty \exp(itx) dF(x) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | Given any [[endomorphism]] $E$ (that is, a linear operator satisfying $E(xy) = E(x)E(y)$) on an algebra $A$, the operator |
− | | + | $$ |
− | Given any [[Endomorphism|endomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008030.png" /> (that is, a linear operator satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008031.png" />) on an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008032.png" />, the operator | + | P = E + E^2 + \cdots = E(I-E)^{-1} |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008033.png" /></td> </tr></table>
| + | is a Baxter operator if the infinite series converges. In particular, the $q$-integral |
− | | + | $$ |
− | is a Baxter operator if the infinite series converges. In particular, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008035.png" />-integral | + | Pf(t) = f(qt) + f(q^2t) + f(q^3t) + \cdots |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008036.png" /></td> </tr></table>
| |
− | | |
| is a Baxter operator. | | is a Baxter operator. |
| | | |
− | The standard Baxter algebra over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008037.png" /> with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008038.png" /> is defined in the following way. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008041.png" /> be sequences such that the terms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008042.png" /> are algebraically independent. On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008043.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008044.png" /> with coordinate-wise addition and multiplication generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008045.png" />, define the Baxter operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008046.png" /> by | + | The ''standard Baxter algebra'' over a field $F$ with generators $x,y,\ldots$ is defined in the following way. Let $x = (x_1,x_2,\ldots)$, $y = (y_1,y_2,\ldots)$, $\ldots$ be sequences such that the terms $x_1,x_2,\ldots,y_1,y_2,\ldots$ are algebraically independent. On the $F$-algebra $A$ with coordinate-wise addition and multiplication generated by $x,y,\ldots$, define the Baxter operator $P$ by |
| + | $$ |
| + | P(u_1,u_2,u_3,\ldots) = (0,u_1,u_1+u_2,u_1+u_2+u_3,\ldots) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008047.png" /></td> </tr></table>
| + | The standard Baxter algebra $B$ is the smallest subalgebra of $A$ containing $x,y,\ldots$ and closed under $P$. Rota [[#References|[a2]]], [[#References|[a3]]] proved that the standard Baxter algebra is free in the category of Baxter algebras (cf. also [[Free algebra]]). |
| | | |
− | The standard Baxter algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008048.png" /> is the smallest subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008049.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008050.png" /> and closed under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008051.png" />. Rota [[#References|[a2]]], [[#References|[a3]]] proved that the standard Baxter algebra is free in the category of Baxter algebras (cf. also [[Free algebra|Free algebra]]).
| + | If $x$ is the sequence $(x_1,x_2,\ldots)$, then the $(k+1)$-st term in $P(x^n)$ is the power sum symmetric function $x_1^n+\cdots+x_k^n$ and the $k$-th term in $P(xP(\ldots(xPx)\ldots))$, where there are $n$ occurrences of $P$, is $e_n(x_1,\ldots,x_k)$. Hence, the free Baxter algebra on one generator $x$ is isomorphic to the algebra of symmetric functions (cf. also [[Symmetric function]]). Because the elementary symmetric functions are algebraically independent, the free Baxter algebra in one generator $x$ is isomorphic to the algebra of polynomials in the variables $x,Px,P(xPx),\ldots$. This solves the word problem (cf. also [[Identity problem|Identity problem]]) for Baxter algebras with one generator. The word problem for Baxter algebras with more than one generator is solved in a similar way by P. Cartier. In particular, an identity amongst symmetric functions can be translated into an identity satisfied by all Baxter algebras on one generator. For example, writing Waring's identity in terms of Baxter operators, one obtains |
| + | $$ |
| + | \sum_{n=0}^\infty P(xP(\ldots(xPx)\ldots)) \lambda^n = \exp\left[{ -P\sum_{k=1}^\infty (-1)^k t^k \frac{\lambda^k}{k} }\right] = \exp[P \log(1+tx)] \ . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008052.png" /> is the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008053.png" />, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008054.png" />st term in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008055.png" /> is the power sum symmetric function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008056.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008057.png" />th term in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008058.png" />, where there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008059.png" /> occurrences of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008060.png" />, is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008061.png" />. Hence, the free Baxter algebra on one generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008062.png" /> is isomorphic to the algebra of symmetric functions (cf. also [[Symmetric function|Symmetric function]]). Because the elementary symmetric functions are algebraically independent, the free Baxter algebra in one generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008063.png" /> is isomorphic to the algebra of polynomials in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008064.png" />. This solves the word problem (cf. also [[Identity problem|Identity problem]]) for Baxter algebras with one generator. The word problem for Baxter algebras with more than one generator is solved in a similar way by P. Cartier. In particular, an identity amongst symmetric functions can be translated into an identity satisfied by all Baxter algebras on one generator. For example, writing Waring's identity in terms of Baxter operators, one obtains
| + | When $P$ is the Baxter operator given in (a2), this identity is Spitzer's identity. When $P$ is the $q$-integral, this identity becomes the Eulerian identity |
| + | $$ |
| + | \sum_{n=1}^\infty \frac{ t^n q^{n(n+1)/2} }{ (1-q)\cdots(1-q^n) } = \prod_{k=1}^\infty (1+q^k t) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008065.png" /></td> </tr></table> | + | ====References==== |
− | | + | <table> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008066.png" /></td> </tr></table> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Baxter, "An analytic problem whose solution follows from a simple algebraic identity" ''Pacific J. Math.'' , '''10''' (1960) pp. 731–742 {{DOI|10.2140/pjm.1960.10.731}} {{ZBL|0095.12705}}</TD></TR> |
− | | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> G.-C. Rota, "Baxter algebras and combinatorial identities I–II" ''Bull. Amer. Math. Soc.'' , '''75''' (1969) pp. 325–334 {{DOI|10.1090/S0002-9904-1969-12158-0}} {{ZBL|0319.05008}}</TD></TR> |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008067.png" /> is the Baxter operator given in (a2), this identity is Spitzer's identity. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008068.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008069.png" />-integral, this identity becomes the Eulerian identity
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> G.-C. Rota, "Baxter algebras: an introduction" J.P.S. Kung (ed.) , ''Gian-Carlo Rota on combinatorics: Introductory papers and commentaries'' , Birkhäuser (1995) {{ISBN|3-7643-3713-3}} pp. 504–512 {{ZBL|0841.01031}}</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> Frank Spitzer, "A combinatorial lemma and its application to probability theory" ''Trans. Am. Math. Soc.'' '''82''' (1956) 323-339 {{DOI|10.1090/S0002-9947-1956-0079851-X}} {{ZBL|0071.13003}}</TD></TR> |
| + | </table> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130080/b13008070.png" /></td> </tr></table> | + | ====Further reading==== |
| + | <table> |
| + | <TR><TD valign="top">[b1]</TD> <TD valign="top"> Guo, Li, "An introduction to Rota-Baxter algebra", Surveys of Modern Mathematics '''4''', International Press (2012) {{ISBN|978-1-57146-253-4}} {{ZBL|1271.16001}} </TD></TR> |
| + | </table> |
| | | |
− | ====References====
| + | [[Category:TeX done]] |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Baxter, "An analytic problem whose solution follows from a simple algebraic identity" ''Pacific J. Math.'' , '''10''' (1960) pp. 731–742</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.-C. Rota, "Baxter algebras and combinatorial identities I–II" ''Bull. Amer. Math. Soc.'' , '''75''' (1969) pp. 325–334</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.-C. Rota, "Baxter algebras: an introduction" J.P.S. Kung (ed.) , ''Gian-Carlo Rota on Combinatorics'' , Birkhäuser (1995) pp. 504–512</TD></TR></table>
| |
Baxter algebras originated in the following problem in fluctuation theory: Find the distribution functions of the maxima $\max\{0, S_1, \ldots, S_n \}$ of the partial sums $S_0 = 0$, $S_1=X_1$, $S_2=X_1 + X_2$, $\ldots$, $S_n = X_1+\cdots+X_n$, of a sequence $X_i$ of independent identically-distributed random variables. A central result in this area is the Spitzer identity
$$
\sum_{n=0}^\infty \phi_n(t) \lambda^n = \exp\left[{ \sum_{k=1}^\infty \psi_k(t) \frac{\lambda^k}{k} }\right]\ ,
$$
where $\phi_n(t)$ is the characteristic function of $\max\{0, S_1, \ldots, S_n \}$ and $\psi_k(t)$ is the characteristic function of $\max\{0, S_k \}$. Spitzer's identity bears an remarkable resemblance to the Waring identity
$$
\sum_{n=0}^\infty e_n(x_1,x_2,\ldots) \lambda^n = \exp\left[{ -\sum_{k=1}^\infty (-1)^k p_k(x_1,x_2,\ldots) \frac{\lambda^k}{k} }\right]
$$
where $e_n(x_1,x_2,\ldots)$ are elementary symmetric functions and $p_k(x_1,x_2,\ldots)$ are power sum symmetric functions. The algebraic structure underlying both identities is a Baxter algebra. These algebras were defined by G.-C. Rota in [a2], [a3].
A Baxter operator $P$ on an algebra $A$ over a field $k$ is a linear operator from $A$ to itself satisfying the identity
$$\label{eq:a1}
P(xPy) + P(yPx) = (Px)(Py) + q P(xy)
$$
where $q$ is a constant in $k$. A Baxter algebra is an algebra with a Baxter operator.
An example is the algebra of real-valued continuous functions on the interval $[0,1]$ with the integration operator
$$
Pf(x) = \int_0^x f(t) dt \ .
$$
The formula for integration by parts is identity (a1) with $q=0$.
Another example is the Banach algebra of characteristic functions of distribution functions of random variables (cf. also Characteristic function; Random variable) with the Baxter operator $P$ which sends the characteristic function of a random variable $X$ to the characteristic function of $\max\{0,X\}$. That is, if
$$
\xi(t) = \int_{-\infty}^\infty \exp(itx) dF(x)
$$
then
$$\label{eq:a2}
P\xi(t) = \int_0^\infty \exp(itx) dF(x) \ .
$$
Given any endomorphism $E$ (that is, a linear operator satisfying $E(xy) = E(x)E(y)$) on an algebra $A$, the operator
$$
P = E + E^2 + \cdots = E(I-E)^{-1}
$$
is a Baxter operator if the infinite series converges. In particular, the $q$-integral
$$
Pf(t) = f(qt) + f(q^2t) + f(q^3t) + \cdots
$$
is a Baxter operator.
The standard Baxter algebra over a field $F$ with generators $x,y,\ldots$ is defined in the following way. Let $x = (x_1,x_2,\ldots)$, $y = (y_1,y_2,\ldots)$, $\ldots$ be sequences such that the terms $x_1,x_2,\ldots,y_1,y_2,\ldots$ are algebraically independent. On the $F$-algebra $A$ with coordinate-wise addition and multiplication generated by $x,y,\ldots$, define the Baxter operator $P$ by
$$
P(u_1,u_2,u_3,\ldots) = (0,u_1,u_1+u_2,u_1+u_2+u_3,\ldots)
$$
The standard Baxter algebra $B$ is the smallest subalgebra of $A$ containing $x,y,\ldots$ and closed under $P$. Rota [a2], [a3] proved that the standard Baxter algebra is free in the category of Baxter algebras (cf. also Free algebra).
If $x$ is the sequence $(x_1,x_2,\ldots)$, then the $(k+1)$-st term in $P(x^n)$ is the power sum symmetric function $x_1^n+\cdots+x_k^n$ and the $k$-th term in $P(xP(\ldots(xPx)\ldots))$, where there are $n$ occurrences of $P$, is $e_n(x_1,\ldots,x_k)$. Hence, the free Baxter algebra on one generator $x$ is isomorphic to the algebra of symmetric functions (cf. also Symmetric function). Because the elementary symmetric functions are algebraically independent, the free Baxter algebra in one generator $x$ is isomorphic to the algebra of polynomials in the variables $x,Px,P(xPx),\ldots$. This solves the word problem (cf. also Identity problem) for Baxter algebras with one generator. The word problem for Baxter algebras with more than one generator is solved in a similar way by P. Cartier. In particular, an identity amongst symmetric functions can be translated into an identity satisfied by all Baxter algebras on one generator. For example, writing Waring's identity in terms of Baxter operators, one obtains
$$
\sum_{n=0}^\infty P(xP(\ldots(xPx)\ldots)) \lambda^n = \exp\left[{ -P\sum_{k=1}^\infty (-1)^k t^k \frac{\lambda^k}{k} }\right] = \exp[P \log(1+tx)] \ .
$$
When $P$ is the Baxter operator given in (a2), this identity is Spitzer's identity. When $P$ is the $q$-integral, this identity becomes the Eulerian identity
$$
\sum_{n=1}^\infty \frac{ t^n q^{n(n+1)/2} }{ (1-q)\cdots(1-q^n) } = \prod_{k=1}^\infty (1+q^k t) \ .
$$
References
Further reading
[b1] | Guo, Li, "An introduction to Rota-Baxter algebra", Surveys of Modern Mathematics 4, International Press (2012) ISBN 978-1-57146-253-4 Zbl 1271.16001 |