|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A non-zero lower semi-continuous semi-finite trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215402.png" /> on a [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215403.png" />-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215404.png" /> satisfying the following condition (cf. [[Trace on a C*-algebra|Trace on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215405.png" />-algebra]]): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215406.png" /> is a lower semi-continuous semi-finite trace on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215407.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215408.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215409.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154010.png" /> for a certain non-negative number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154011.png" /> and all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154012.png" /> in the closure of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154013.png" /> generated by the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154014.png" />. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154015.png" /> admitting a trace and the set of characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154016.png" /> defined up to a positive multiplier (cf. [[Factor representation|Factor representation]]); this correspondence is established by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154019.png" /> is the factor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154020.png" /> admitting the trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154021.png" />. If the trace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154023.png" /> is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154025.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154026.png" /> and the set of finite characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154027.png" /> with norm 1. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154028.png" /> is commutative, then any character of the commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154029.png" /> is a character of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154030.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154031.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154032.png" /> is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154033.png" />-algebra of a compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154034.png" />, then the characters of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154035.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154036.png" /> are finite, and to such a character with norm 1 there corresponds a normalized character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154037.png" />.
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| + | |
| + | Out of 1 formulas, 1 were replaced by TEX code.--> |
| + | |
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | A non-zero lower semi-continuous semi-finite trace $ f $ |
| + | on a [[C*-algebra| $ C ^ {*} $- |
| + | algebra]] $ A $ |
| + | satisfying the following condition (cf. [[Trace on a C*-algebra|Trace on a $ C ^ {*} $- |
| + | algebra]]): If $ \phi $ |
| + | is a lower semi-continuous semi-finite trace on $ A $ |
| + | and if $ \phi ( x) \leq f ( x) $ |
| + | for all $ x \in A ^ {+} $, |
| + | then $ \phi ( x) = \lambda f ( x) $ |
| + | for a certain non-negative number $ \lambda $ |
| + | and all elements $ x \in A ^ {+} $ |
| + | in the closure of the ideal $ \mathfrak N _ {f} $ |
| + | generated by the set $ \{ {x } : {x \in A ^ {+} , f ( x) < + \infty } \} $. |
| + | There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of $ A $ |
| + | admitting a trace and the set of characters of $ A $ |
| + | defined up to a positive multiplier (cf. [[Factor representation|Factor representation]]); this correspondence is established by the formula $ f ( x) = \chi ( \pi ( x)) $, |
| + | $ x \in A $, |
| + | where $ \pi $ |
| + | is the factor representation of $ A $ |
| + | admitting the trace $ \chi $. |
| + | If the trace $ f $ |
| + | on $ A $ |
| + | is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a $ C ^ {*} $- |
| + | algebra $ A $ |
| + | and the set of finite characters of $ A $ |
| + | with norm 1. If $ A $ |
| + | is commutative, then any character of the commutative algebra $ A $ |
| + | is a character of the $ C ^ {*} $- |
| + | algebra $ A $. |
| + | If $ A $ |
| + | is the group $ C ^ {*} $- |
| + | algebra of a compact group $ G $, |
| + | then the characters of the $ C ^ {*} $- |
| + | algebra $ A $ |
| + | are finite, and to such a character with norm 1 there corresponds a normalized character of $ G $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Dixmier, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154038.png" /> algebras" , North-Holland (1977) (Translated from French)</TD></TR></table> | + | <table> |
| + | <tr><td valign="top">[1]</td> <td valign="top"> J. Dixmier, "$C^*$ algebras" , North-Holland (1977) (Translated from French)</td></tr> |
| + | </table> |
A non-zero lower semi-continuous semi-finite trace $ f $
on a $ C ^ {*} $-
algebra $ A $
satisfying the following condition (cf. Trace on a $ C ^ {*} $-
algebra): If $ \phi $
is a lower semi-continuous semi-finite trace on $ A $
and if $ \phi ( x) \leq f ( x) $
for all $ x \in A ^ {+} $,
then $ \phi ( x) = \lambda f ( x) $
for a certain non-negative number $ \lambda $
and all elements $ x \in A ^ {+} $
in the closure of the ideal $ \mathfrak N _ {f} $
generated by the set $ \{ {x } : {x \in A ^ {+} , f ( x) < + \infty } \} $.
There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of $ A $
admitting a trace and the set of characters of $ A $
defined up to a positive multiplier (cf. Factor representation); this correspondence is established by the formula $ f ( x) = \chi ( \pi ( x)) $,
$ x \in A $,
where $ \pi $
is the factor representation of $ A $
admitting the trace $ \chi $.
If the trace $ f $
on $ A $
is finite, then the character is said to be finite; a finite character is continuous. There exists a canonical one-to-one correspondence between the set of quasi-equivalence classes of non-zero factor representations of finite type of a $ C ^ {*} $-
algebra $ A $
and the set of finite characters of $ A $
with norm 1. If $ A $
is commutative, then any character of the commutative algebra $ A $
is a character of the $ C ^ {*} $-
algebra $ A $.
If $ A $
is the group $ C ^ {*} $-
algebra of a compact group $ G $,
then the characters of the $ C ^ {*} $-
algebra $ A $
are finite, and to such a character with norm 1 there corresponds a normalized character of $ G $.
References
[1] | J. Dixmier, "$C^*$ algebras" , North-Holland (1977) (Translated from French) |