Namespaces
Variants
Actions

Difference between revisions of "L-variety"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100402.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100403.png" />-groups (cf. [[L-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100404.png" />-group]]) that is distinguished within the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100405.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100406.png" />-groups by some system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100407.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100408.png" />-group identities: an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100409.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004010.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004011.png" /> if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004012.png" />,
+
<!--
 +
l1100402.png
 +
$#A+1 = 114 n = 0
 +
$#C+1 = 114 : ~/encyclopedia/old_files/data/L110/L.1100040 \BMI l\EMI\AAhvariety
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004013.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004014.png" /> are terms in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004015.png" /> in the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004017.png" />. (Cf. also [[Variety of groups|Variety of groups]].)
+
A class  $  {\mathcal X} $
 +
of l $-
 +
groups (cf. [[L-group| $  l $-
 +
group]]) that is distinguished within the class  $  {\mathcal L} $
 +
of all  $  l $-
 +
groups by some system  $  X $
 +
of  $  l $-
 +
group identities: an  $  l $-
 +
group  $  G $
 +
belongs to  $  {\mathcal X} $
 +
if and only if for all  $  x _ {1} \dots x _ {n} \in G $,
  
The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004018.png" /> is defined by the following axiom system:
+
$$
 +
w _ {i} ( x _ {1} \dots x _ {n} ) = e  \textrm{ for  every  }  w _ {i} \in X,
 +
$$
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004019.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004020.png" /> is a [[Group|group]];
+
where  $  w _ {i} $
 +
are terms in the variables  $  x _ {1} \dots x _ {n} $
 +
in the signature of  $  {\mathcal L} $,
 +
$  l = \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $.  
 +
(Cf. also [[Variety of groups|Variety of groups]].)
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png" /> is a [[Lattice|lattice]];
+
The class  $  {\mathcal L} $
 +
is defined by the following axiom system:
  
3) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004024.png" />;
+
1) if  $  G \in {\mathcal L} $,  
 +
then  $  \{ G, \cdot,e, ^ {- 1 } \} $
 +
is a [[Group|group]];
  
4) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004026.png" />.
+
2) if  $  G \in {\mathcal L} $,  
 +
then  $  \{ G, \lor, \wedge \} $
 +
is a [[Lattice|lattice]];
  
Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004027.png" />-variety is closed under taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004028.png" />-subgroups, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004029.png" />-homomorphisms, direct and Cartesian products, and is locally closed. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004030.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004031.png" />-group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004032.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004033.png" />-variety, then there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004034.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004035.png" />-ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004036.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004037.png" /> for every convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004038.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004041.png" />. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004042.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004043.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004044.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004045.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004046.png" /> that is a free object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004047.png" /> with set of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004048.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004049.png" /> has the property: a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004050.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004051.png" /> into the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004052.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004053.png" />, can be extended to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004054.png" />-homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004056.png" />. There exists a description of the free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004057.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004058.png" /> in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004059.png" />-groups and groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004060.png" /> of order automorphisms of a suitable totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004061.png" /> (cf. [[Ro-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004062.png" />-group]]). The free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004063.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004065.png" /> free generators has a faithful transitive representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004066.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004067.png" />. It is a group with unique roots and orderable.
+
3) for all  $  x,y,z,t $,  
 +
$  x ( y \lor z ) t = xyt \lor xzt $;
  
The most important <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004068.png" />-varieties are as follows: a) the class of Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004069.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004070.png" />; b) the class of the normal-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004072.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004073.png" />; and c) the class of representable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004075.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004076.png" />.
+
4) for all  $  x,y,z,t $,
 +
$  x ( y \wedge z ) t = xyt \wedge xzt $.
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004077.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004078.png" /> is distinguished in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004079.png" /> by the identity
+
Any  $  l $-
 +
variety is closed under taking  $  l $-
 +
subgroups,  $  l $-
 +
homomorphisms, direct and Cartesian products, and is locally closed. If  $  G $
 +
is an  $  l $-
 +
group and  $  {\mathcal X} $
 +
is an  $  l $-
 +
variety, then there exists in  $  G $
 +
an  $  l $-
 +
ideal  $  {\mathcal X} ( G ) \in {\mathcal X} $
 +
such that  $  H \subseteq {\mathcal X} ( G ) $
 +
for every convex  $  l $-
 +
subgroup  $  H $
 +
of  $  G $,
 +
$  H \in {\mathcal X} $.  
 +
For every  $  l $-
 +
variety $  {\mathcal X} $
 +
and set  $  T $
 +
there exists an  $  l $-
 +
group  $  F _  {\mathcal X}  ( T ) \in {\mathcal X} $
 +
that is a free object in  $  {\mathcal X} $
 +
with set of generators  $  T $,
 +
i.e.,  $  F _  {\mathcal X}  ( T ) $
 +
has the property: a mapping  $  \varphi $
 +
from  $  T $
 +
into the  $  l $-
 +
group  $  G \in {\mathcal X} $,
 +
can be extended to an  $  l $-
 +
homomorphism from  $  F _  {\mathcal X}  ( Y ) $
 +
into  $  G $.  
 +
There exists a description of the free  $  l $-
 +
groups  $  F _  {\mathcal X}  $
 +
in terms of  $  ro $-
 +
groups and groups  $  { \mathop{\rm Aut} } ( X ) $
 +
of order automorphisms of a suitable totally ordered set  $  X $(
 +
cf. [[Ro-group| $  ro $-
 +
group]]). The free  $  l $-
 +
group  $  F = F _  {\mathcal L}  $
 +
on  $  n \geq  2 $
 +
free generators has a faithful transitive representation in  $  { \mathop{\rm Aut} } ( X ) $
 +
for some  $  X $.
 +
It is a group with unique roots and orderable.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004080.png" /></td> </tr></table>
+
The most important  $  l $-
 +
varieties are as follows: a) the class of Abelian  $  l $-
 +
groups  $  {\mathcal A} $;  
 +
b) the class of the normal-valued  $  l $-
 +
groups  $  {\mathcal V} $;  
 +
and c) the class of representable  $  l $-
 +
groups  $  {\mathcal R} $.
  
(here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004081.png" />). An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004082.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004083.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004084.png" /> if and only if for any jump <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004085.png" /> in the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004086.png" /> of convex subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004087.png" /> one has: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004088.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004089.png" />-ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004090.png" /> and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004091.png" /> is Abelian. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004092.png" /> for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004093.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004094.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004095.png" />.
+
The  $  l $-
 +
variety  $  {\mathcal V} $
 +
is distinguished in $  {\mathcal L} $
 +
by the identity
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004096.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004097.png" /> is distinguished in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004098.png" /> by the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004099.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040100.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040101.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040102.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040103.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040104.png" />-subgroup of a Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040105.png" />-groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040106.png" /> is a locally nilpotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040107.png" />-group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040108.png" />.
+
$$
 +
\left | x \right | \left | y \right | \wedge \left | y \right |  ^ {2} \left | x \right |  ^ {2} = \left | x \right | \left | y \right |
 +
$$
  
The set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040109.png" />-varieties is a complete [[Distributive lattice|distributive lattice]]. The power of this lattice is the continuum. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040110.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040111.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040112.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040113.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040114.png" /> covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040115.png" /> in the lattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040116.png" />-varieties. The set of all covers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040117.png" /> has been described.
+
(here,  $  | x | = x \lor x ^ {- 1 } $).
 +
An  $  l $-
 +
group  $  G $
 +
belongs to  $  {\mathcal V} $
 +
if and only if for any jump  $  A \subset  B $
 +
in the lattice  $  {\mathcal C} ( G ) $
 +
of convex subgroups of $  G $
 +
one has: $  A $
 +
is an  $  l $-
 +
ideal of  $  B $
 +
and the quotient group  $  B/A $
 +
is Abelian. If  $  {\mathcal X} \neq {\mathcal L} $
 +
for an  $  l $-
 +
variety  $  {\mathcal X} $,
 +
then  $  {\mathcal X} \subseteq {\mathcal V} $.
 +
 
 +
The  $  l $-
 +
variety  $  {\mathcal R} $
 +
is distinguished in  $  {\mathcal L} $
 +
by the identity  $  ( x \wedge y ^ {- 1 } xy ) \lor e = e $.  
 +
An  $  l $-
 +
group  $  G $
 +
belongs to  $  {\mathcal R} $
 +
if and only if  $  G $
 +
is an  $  l $-
 +
subgroup of a Cartesian product of  $  o $-
 +
groups. If  $  G $
 +
is a locally nilpotent  $  l $-
 +
group, then  $  G \in {\mathcal R} $.
 +
 
 +
The set of all  $  l $-
 +
varieties is a complete [[Distributive lattice|distributive lattice]]. The power of this lattice is the continuum. For any l $-
 +
variety $  {\mathcal X} \neq {\mathcal L} $
 +
there exists an l $-
 +
variety $  {\mathcal Y} $
 +
such that $  {\mathcal Y} $
 +
covers $  {\mathcal X} $
 +
in the lattice of l $-
 +
varieties. The set of all covers of $  {\mathcal A} $
 +
has been described.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  "Lattice-ordered groups: advances and techniques"  A.M.W. Glass (ed.)  W.Ch. Holland (ed.) , Kluwer Acad. Publ.  (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.M. Kopytov,  N.Ya. Medvedev,  "The theory of lattice-ordered groups" , Kluwer Acad. Publ.  (1994)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  "Lattice-ordered groups: advances and techniques"  A.M.W. Glass (ed.)  W.Ch. Holland (ed.) , Kluwer Acad. Publ.  (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.M. Kopytov,  N.Ya. Medvedev,  "The theory of lattice-ordered groups" , Kluwer Acad. Publ.  (1994)  (In Russian)</TD></TR></table>

Latest revision as of 22:15, 5 June 2020


A class $ {\mathcal X} $ of $ l $- groups (cf. $ l $- group) that is distinguished within the class $ {\mathcal L} $ of all $ l $- groups by some system $ X $ of $ l $- group identities: an $ l $- group $ G $ belongs to $ {\mathcal X} $ if and only if for all $ x _ {1} \dots x _ {n} \in G $,

$$ w _ {i} ( x _ {1} \dots x _ {n} ) = e \textrm{ for every } w _ {i} \in X, $$

where $ w _ {i} $ are terms in the variables $ x _ {1} \dots x _ {n} $ in the signature of $ {\mathcal L} $, $ l = \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $. (Cf. also Variety of groups.)

The class $ {\mathcal L} $ is defined by the following axiom system:

1) if $ G \in {\mathcal L} $, then $ \{ G, \cdot,e, ^ {- 1 } \} $ is a group;

2) if $ G \in {\mathcal L} $, then $ \{ G, \lor, \wedge \} $ is a lattice;

3) for all $ x,y,z,t $, $ x ( y \lor z ) t = xyt \lor xzt $;

4) for all $ x,y,z,t $, $ x ( y \wedge z ) t = xyt \wedge xzt $.

Any $ l $- variety is closed under taking $ l $- subgroups, $ l $- homomorphisms, direct and Cartesian products, and is locally closed. If $ G $ is an $ l $- group and $ {\mathcal X} $ is an $ l $- variety, then there exists in $ G $ an $ l $- ideal $ {\mathcal X} ( G ) \in {\mathcal X} $ such that $ H \subseteq {\mathcal X} ( G ) $ for every convex $ l $- subgroup $ H $ of $ G $, $ H \in {\mathcal X} $. For every $ l $- variety $ {\mathcal X} $ and set $ T $ there exists an $ l $- group $ F _ {\mathcal X} ( T ) \in {\mathcal X} $ that is a free object in $ {\mathcal X} $ with set of generators $ T $, i.e., $ F _ {\mathcal X} ( T ) $ has the property: a mapping $ \varphi $ from $ T $ into the $ l $- group $ G \in {\mathcal X} $, can be extended to an $ l $- homomorphism from $ F _ {\mathcal X} ( Y ) $ into $ G $. There exists a description of the free $ l $- groups $ F _ {\mathcal X} $ in terms of $ ro $- groups and groups $ { \mathop{\rm Aut} } ( X ) $ of order automorphisms of a suitable totally ordered set $ X $( cf. $ ro $- group). The free $ l $- group $ F = F _ {\mathcal L} $ on $ n \geq 2 $ free generators has a faithful transitive representation in $ { \mathop{\rm Aut} } ( X ) $ for some $ X $. It is a group with unique roots and orderable.

The most important $ l $- varieties are as follows: a) the class of Abelian $ l $- groups $ {\mathcal A} $; b) the class of the normal-valued $ l $- groups $ {\mathcal V} $; and c) the class of representable $ l $- groups $ {\mathcal R} $.

The $ l $- variety $ {\mathcal V} $ is distinguished in $ {\mathcal L} $ by the identity

$$ \left | x \right | \left | y \right | \wedge \left | y \right | ^ {2} \left | x \right | ^ {2} = \left | x \right | \left | y \right | $$

(here, $ | x | = x \lor x ^ {- 1 } $). An $ l $- group $ G $ belongs to $ {\mathcal V} $ if and only if for any jump $ A \subset B $ in the lattice $ {\mathcal C} ( G ) $ of convex subgroups of $ G $ one has: $ A $ is an $ l $- ideal of $ B $ and the quotient group $ B/A $ is Abelian. If $ {\mathcal X} \neq {\mathcal L} $ for an $ l $- variety $ {\mathcal X} $, then $ {\mathcal X} \subseteq {\mathcal V} $.

The $ l $- variety $ {\mathcal R} $ is distinguished in $ {\mathcal L} $ by the identity $ ( x \wedge y ^ {- 1 } xy ) \lor e = e $. An $ l $- group $ G $ belongs to $ {\mathcal R} $ if and only if $ G $ is an $ l $- subgroup of a Cartesian product of $ o $- groups. If $ G $ is a locally nilpotent $ l $- group, then $ G \in {\mathcal R} $.

The set of all $ l $- varieties is a complete distributive lattice. The power of this lattice is the continuum. For any $ l $- variety $ {\mathcal X} \neq {\mathcal L} $ there exists an $ l $- variety $ {\mathcal Y} $ such that $ {\mathcal Y} $ covers $ {\mathcal X} $ in the lattice of $ l $- varieties. The set of all covers of $ {\mathcal A} $ has been described.

References

[a1] "Lattice-ordered groups: advances and techniques" A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Kluwer Acad. Publ. (1989)
[a2] V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)
How to Cite This Entry:
L-variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=L-variety&oldid=18744
This article was adapted from an original article by V.M. Kopytov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article