|
|
Line 1: |
Line 1: |
− | A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100402.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100403.png" />-groups (cf. [[L-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100404.png" />-group]]) that is distinguished within the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100405.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100406.png" />-groups by some system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100407.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100408.png" />-group identities: an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l1100409.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004010.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004011.png" /> if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004012.png" />,
| + | <!-- |
| + | l1100402.png |
| + | $#A+1 = 114 n = 0 |
| + | $#C+1 = 114 : ~/encyclopedia/old_files/data/L110/L.1100040 \BMI l\EMI\AAhvariety |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004013.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004014.png" /> are terms in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004015.png" /> in the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004017.png" />. (Cf. also [[Variety of groups|Variety of groups]].)
| + | A class $ {\mathcal X} $ |
| + | of $ l $- |
| + | groups (cf. [[L-group| $ l $- |
| + | group]]) that is distinguished within the class $ {\mathcal L} $ |
| + | of all $ l $- |
| + | groups by some system $ X $ |
| + | of $ l $- |
| + | group identities: an $ l $- |
| + | group $ G $ |
| + | belongs to $ {\mathcal X} $ |
| + | if and only if for all $ x _ {1} \dots x _ {n} \in G $, |
| | | |
− | The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004018.png" /> is defined by the following axiom system:
| + | $$ |
| + | w _ {i} ( x _ {1} \dots x _ {n} ) = e \textrm{ for every } w _ {i} \in X, |
| + | $$ |
| | | |
− | 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004019.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004020.png" /> is a [[Group|group]]; | + | where $ w _ {i} $ |
| + | are terms in the variables $ x _ {1} \dots x _ {n} $ |
| + | in the signature of $ {\mathcal L} $, |
| + | $ l = \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $. |
| + | (Cf. also [[Variety of groups|Variety of groups]].) |
| | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png" /> is a [[Lattice|lattice]];
| + | The class $ {\mathcal L} $ |
| + | is defined by the following axiom system: |
| | | |
− | 3) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004024.png" />;
| + | 1) if $ G \in {\mathcal L} $, |
| + | then $ \{ G, \cdot,e, ^ {- 1 } \} $ |
| + | is a [[Group|group]]; |
| | | |
− | 4) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004026.png" />.
| + | 2) if $ G \in {\mathcal L} $, |
| + | then $ \{ G, \lor, \wedge \} $ |
| + | is a [[Lattice|lattice]]; |
| | | |
− | Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004027.png" />-variety is closed under taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004028.png" />-subgroups, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004029.png" />-homomorphisms, direct and Cartesian products, and is locally closed. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004030.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004031.png" />-group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004032.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004033.png" />-variety, then there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004034.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004035.png" />-ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004036.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004037.png" /> for every convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004038.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004041.png" />. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004042.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004043.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004044.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004045.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004046.png" /> that is a free object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004047.png" /> with set of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004048.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004049.png" /> has the property: a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004050.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004051.png" /> into the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004052.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004053.png" />, can be extended to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004054.png" />-homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004055.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004056.png" />. There exists a description of the free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004057.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004058.png" /> in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004059.png" />-groups and groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004060.png" /> of order automorphisms of a suitable totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004061.png" /> (cf. [[Ro-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004062.png" />-group]]). The free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004063.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004065.png" /> free generators has a faithful transitive representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004066.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004067.png" />. It is a group with unique roots and orderable.
| + | 3) for all $ x,y,z,t $, |
| + | $ x ( y \lor z ) t = xyt \lor xzt $; |
| | | |
− | The most important <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004068.png" />-varieties are as follows: a) the class of Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004069.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004070.png" />; b) the class of the normal-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004072.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004073.png" />; and c) the class of representable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004075.png" />-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004076.png" />.
| + | 4) for all $ x,y,z,t $, |
| + | $ x ( y \wedge z ) t = xyt \wedge xzt $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004077.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004078.png" /> is distinguished in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004079.png" /> by the identity
| + | Any $ l $- |
| + | variety is closed under taking $ l $- |
| + | subgroups, $ l $- |
| + | homomorphisms, direct and Cartesian products, and is locally closed. If $ G $ |
| + | is an $ l $- |
| + | group and $ {\mathcal X} $ |
| + | is an $ l $- |
| + | variety, then there exists in $ G $ |
| + | an $ l $- |
| + | ideal $ {\mathcal X} ( G ) \in {\mathcal X} $ |
| + | such that $ H \subseteq {\mathcal X} ( G ) $ |
| + | for every convex $ l $- |
| + | subgroup $ H $ |
| + | of $ G $, |
| + | $ H \in {\mathcal X} $. |
| + | For every $ l $- |
| + | variety $ {\mathcal X} $ |
| + | and set $ T $ |
| + | there exists an $ l $- |
| + | group $ F _ {\mathcal X} ( T ) \in {\mathcal X} $ |
| + | that is a free object in $ {\mathcal X} $ |
| + | with set of generators $ T $, |
| + | i.e., $ F _ {\mathcal X} ( T ) $ |
| + | has the property: a mapping $ \varphi $ |
| + | from $ T $ |
| + | into the $ l $- |
| + | group $ G \in {\mathcal X} $, |
| + | can be extended to an $ l $- |
| + | homomorphism from $ F _ {\mathcal X} ( Y ) $ |
| + | into $ G $. |
| + | There exists a description of the free $ l $- |
| + | groups $ F _ {\mathcal X} $ |
| + | in terms of $ ro $- |
| + | groups and groups $ { \mathop{\rm Aut} } ( X ) $ |
| + | of order automorphisms of a suitable totally ordered set $ X $( |
| + | cf. [[Ro-group| $ ro $- |
| + | group]]). The free $ l $- |
| + | group $ F = F _ {\mathcal L} $ |
| + | on $ n \geq 2 $ |
| + | free generators has a faithful transitive representation in $ { \mathop{\rm Aut} } ( X ) $ |
| + | for some $ X $. |
| + | It is a group with unique roots and orderable. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004080.png" /></td> </tr></table>
| + | The most important $ l $- |
| + | varieties are as follows: a) the class of Abelian $ l $- |
| + | groups $ {\mathcal A} $; |
| + | b) the class of the normal-valued $ l $- |
| + | groups $ {\mathcal V} $; |
| + | and c) the class of representable $ l $- |
| + | groups $ {\mathcal R} $. |
| | | |
− | (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004081.png" />). An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004082.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004083.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004084.png" /> if and only if for any jump <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004085.png" /> in the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004086.png" /> of convex subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004087.png" /> one has: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004088.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004089.png" />-ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004090.png" /> and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004091.png" /> is Abelian. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004092.png" /> for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004093.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004094.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004095.png" />.
| + | The $ l $- |
| + | variety $ {\mathcal V} $ |
| + | is distinguished in $ {\mathcal L} $ |
| + | by the identity |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004096.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004097.png" /> is distinguished in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004098.png" /> by the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004099.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040100.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040101.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040102.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040103.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040104.png" />-subgroup of a Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040105.png" />-groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040106.png" /> is a locally nilpotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040107.png" />-group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040108.png" />.
| + | $$ |
| + | \left | x \right | \left | y \right | \wedge \left | y \right | ^ {2} \left | x \right | ^ {2} = \left | x \right | \left | y \right | |
| + | $$ |
| | | |
− | The set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040109.png" />-varieties is a complete [[Distributive lattice|distributive lattice]]. The power of this lattice is the continuum. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040110.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040111.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040112.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040113.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040114.png" /> covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040115.png" /> in the lattice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040116.png" />-varieties. The set of all covers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l110040117.png" /> has been described.
| + | (here, $ | x | = x \lor x ^ {- 1 } $). |
| + | An $ l $- |
| + | group $ G $ |
| + | belongs to $ {\mathcal V} $ |
| + | if and only if for any jump $ A \subset B $ |
| + | in the lattice $ {\mathcal C} ( G ) $ |
| + | of convex subgroups of $ G $ |
| + | one has: $ A $ |
| + | is an $ l $- |
| + | ideal of $ B $ |
| + | and the quotient group $ B/A $ |
| + | is Abelian. If $ {\mathcal X} \neq {\mathcal L} $ |
| + | for an $ l $- |
| + | variety $ {\mathcal X} $, |
| + | then $ {\mathcal X} \subseteq {\mathcal V} $. |
| + | |
| + | The $ l $- |
| + | variety $ {\mathcal R} $ |
| + | is distinguished in $ {\mathcal L} $ |
| + | by the identity $ ( x \wedge y ^ {- 1 } xy ) \lor e = e $. |
| + | An $ l $- |
| + | group $ G $ |
| + | belongs to $ {\mathcal R} $ |
| + | if and only if $ G $ |
| + | is an $ l $- |
| + | subgroup of a Cartesian product of $ o $- |
| + | groups. If $ G $ |
| + | is a locally nilpotent $ l $- |
| + | group, then $ G \in {\mathcal R} $. |
| + | |
| + | The set of all $ l $- |
| + | varieties is a complete [[Distributive lattice|distributive lattice]]. The power of this lattice is the continuum. For any $ l $- |
| + | variety $ {\mathcal X} \neq {\mathcal L} $ |
| + | there exists an $ l $- |
| + | variety $ {\mathcal Y} $ |
| + | such that $ {\mathcal Y} $ |
| + | covers $ {\mathcal X} $ |
| + | in the lattice of $ l $- |
| + | varieties. The set of all covers of $ {\mathcal A} $ |
| + | has been described. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> "Lattice-ordered groups: advances and techniques" A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Kluwer Acad. Publ. (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> "Lattice-ordered groups: advances and techniques" A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Kluwer Acad. Publ. (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian)</TD></TR></table> |
A class $ {\mathcal X} $
of $ l $-
groups (cf. $ l $-
group) that is distinguished within the class $ {\mathcal L} $
of all $ l $-
groups by some system $ X $
of $ l $-
group identities: an $ l $-
group $ G $
belongs to $ {\mathcal X} $
if and only if for all $ x _ {1} \dots x _ {n} \in G $,
$$
w _ {i} ( x _ {1} \dots x _ {n} ) = e \textrm{ for every } w _ {i} \in X,
$$
where $ w _ {i} $
are terms in the variables $ x _ {1} \dots x _ {n} $
in the signature of $ {\mathcal L} $,
$ l = \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $.
(Cf. also Variety of groups.)
The class $ {\mathcal L} $
is defined by the following axiom system:
1) if $ G \in {\mathcal L} $,
then $ \{ G, \cdot,e, ^ {- 1 } \} $
is a group;
2) if $ G \in {\mathcal L} $,
then $ \{ G, \lor, \wedge \} $
is a lattice;
3) for all $ x,y,z,t $,
$ x ( y \lor z ) t = xyt \lor xzt $;
4) for all $ x,y,z,t $,
$ x ( y \wedge z ) t = xyt \wedge xzt $.
Any $ l $-
variety is closed under taking $ l $-
subgroups, $ l $-
homomorphisms, direct and Cartesian products, and is locally closed. If $ G $
is an $ l $-
group and $ {\mathcal X} $
is an $ l $-
variety, then there exists in $ G $
an $ l $-
ideal $ {\mathcal X} ( G ) \in {\mathcal X} $
such that $ H \subseteq {\mathcal X} ( G ) $
for every convex $ l $-
subgroup $ H $
of $ G $,
$ H \in {\mathcal X} $.
For every $ l $-
variety $ {\mathcal X} $
and set $ T $
there exists an $ l $-
group $ F _ {\mathcal X} ( T ) \in {\mathcal X} $
that is a free object in $ {\mathcal X} $
with set of generators $ T $,
i.e., $ F _ {\mathcal X} ( T ) $
has the property: a mapping $ \varphi $
from $ T $
into the $ l $-
group $ G \in {\mathcal X} $,
can be extended to an $ l $-
homomorphism from $ F _ {\mathcal X} ( Y ) $
into $ G $.
There exists a description of the free $ l $-
groups $ F _ {\mathcal X} $
in terms of $ ro $-
groups and groups $ { \mathop{\rm Aut} } ( X ) $
of order automorphisms of a suitable totally ordered set $ X $(
cf. $ ro $-
group). The free $ l $-
group $ F = F _ {\mathcal L} $
on $ n \geq 2 $
free generators has a faithful transitive representation in $ { \mathop{\rm Aut} } ( X ) $
for some $ X $.
It is a group with unique roots and orderable.
The most important $ l $-
varieties are as follows: a) the class of Abelian $ l $-
groups $ {\mathcal A} $;
b) the class of the normal-valued $ l $-
groups $ {\mathcal V} $;
and c) the class of representable $ l $-
groups $ {\mathcal R} $.
The $ l $-
variety $ {\mathcal V} $
is distinguished in $ {\mathcal L} $
by the identity
$$
\left | x \right | \left | y \right | \wedge \left | y \right | ^ {2} \left | x \right | ^ {2} = \left | x \right | \left | y \right |
$$
(here, $ | x | = x \lor x ^ {- 1 } $).
An $ l $-
group $ G $
belongs to $ {\mathcal V} $
if and only if for any jump $ A \subset B $
in the lattice $ {\mathcal C} ( G ) $
of convex subgroups of $ G $
one has: $ A $
is an $ l $-
ideal of $ B $
and the quotient group $ B/A $
is Abelian. If $ {\mathcal X} \neq {\mathcal L} $
for an $ l $-
variety $ {\mathcal X} $,
then $ {\mathcal X} \subseteq {\mathcal V} $.
The $ l $-
variety $ {\mathcal R} $
is distinguished in $ {\mathcal L} $
by the identity $ ( x \wedge y ^ {- 1 } xy ) \lor e = e $.
An $ l $-
group $ G $
belongs to $ {\mathcal R} $
if and only if $ G $
is an $ l $-
subgroup of a Cartesian product of $ o $-
groups. If $ G $
is a locally nilpotent $ l $-
group, then $ G \in {\mathcal R} $.
The set of all $ l $-
varieties is a complete distributive lattice. The power of this lattice is the continuum. For any $ l $-
variety $ {\mathcal X} \neq {\mathcal L} $
there exists an $ l $-
variety $ {\mathcal Y} $
such that $ {\mathcal Y} $
covers $ {\mathcal X} $
in the lattice of $ l $-
varieties. The set of all covers of $ {\mathcal A} $
has been described.
References
[a1] | "Lattice-ordered groups: advances and techniques" A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Kluwer Acad. Publ. (1989) |
[a2] | V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian) |