|
|
(5 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | ''of a non-generate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867601.png" /> on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867602.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867603.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867604.png" />) over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867605.png" />''
| + | {{MSC|20}} |
| + | {{TEX|done}} |
| | | |
− | A connected [[Linear algebraic group|linear algebraic group]] which is the simply-connected covering of the irreducible component <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867606.png" /> of the identity of the orthogonal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867607.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867608.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s0867609.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676010.png" /> coincides with the special orthogonal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676011.png" />. The spinor group is constructed in the following way. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676012.png" /> be the [[Clifford algebra|Clifford algebra]] of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676013.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676015.png" />) be the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676016.png" /> generated by products of an even (odd) number of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676017.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676018.png" /> be the canonical anti-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676019.png" /> defined by the formula
| + | The ''spinor group'' or ''spin group'' is associated to |
| + | a non-degenerate [[Quadratic form|quadratic form]] $Q$ on an $n$-dimensional vector space $V$ ($n\ge 3$) over a field $k$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676020.png" /></td> </tr></table>
| + | It is a connected |
| + | [[Linear algebraic group|linear algebraic group]] which is the simply-connected covering of the irreducible component $\def\O{ {\rm O}}\O_n^+(Q)$ of the identity of the orthogonal group $\def\O{ {\rm O}}\O_n(Q)$ of the form $Q$. If $\def\char{ {\rm char}\;}\char k \ne 2$, then $\O_n^+(Q)$ coincides with the special orthogonal group $\def\SO{ {\rm SO}}\SO_n(Q)$. The spinor group is constructed in the following way. Let $C=C(Q)$ be the |
| + | [[Clifford algebra|Clifford algebra]] of the pair $(V,Q)$, let $C^+$ ($C^-$) be the subspace of $C$ generated by products of an even (odd) number of elements of $V$, and let $\def\b{\beta}\b$ be the canonical [[anti-automorphism]] of $C$ defined by the formula |
| | | |
− | The inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676021.png" /> enables one to define the Clifford group | + | $$\b(v_1v_2\dots v_n) = v_n\dots v_2v_1.$$ |
− | | + | The inclusion $V\subset C$ enables one to define the Clifford group |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676022.png" /></td> </tr></table>
| |
| | | |
| + | $$G=\{s\in C : s \textrm{ is invertible in } C \textrm{ and } sVs^{-1} = V\}$$ |
| and the even (or special) Clifford group | | and the even (or special) Clifford group |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676023.png" /></td> </tr></table>
| + | $$G^+ = G\cap C^+.$$ |
− | | + | The spinor group $\def\Spin{ {\rm Spin}}\Spin = \Spin_n(Q) $ is defined by |
− | The spinor group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676024.png" /> is defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676025.png" /></td> </tr></table>
| |
− | | |
− | The spinor group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676026.png" /> is a quasi-simple (when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676027.png" />), connected, simply-connected, linear algebraic group, of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676028.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676029.png" /> and of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676030.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676031.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676032.png" /> it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676033.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676034.png" /> it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676035.png" />. The following isomorphisms hold: | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676036.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676037.png" /></td> </tr></table>
| |
− | | |
− | There is a linear representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676039.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676040.png" /> defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676041.png" /></td> </tr></table>
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676042.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676043.png" /></td> </tr></table>
| |
| | | |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676044.png" /> has a faithful linear representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676045.png" /> (see [[Spinor representation|Spinor representation]]).
| + | $$\Spin_n = \{s\in G^+ : s\b s^{-1} = 1 \}.$$ |
| + | The spinor group $\Spin_n$ is a quasi-simple (when $n\ne 4$), connected, simply-connected, linear algebraic group, of type $B_m$ when $n=2m+1$ and of type $D_m$ when $n=2m \ge 8$; if $n=6$ it is $A_3$ and if $n=4$ it is $A_1\times A_1$. The following isomorphisms hold: |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676046.png" /> is the field of real numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676047.png" /> is positive (or negative) definite, then the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676048.png" /> of real points of the algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676049.png" /> is sometimes also called a spinor group. This is a connected simply-connected compact Lie group which is a two-sheeted covering of the special orthogonal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676050.png" />. The following isomorphisms hold:
| + | $$\Spin_3\simeq \def\SL{ {\rm SL}}\SL_2,\qquad \Spin_2 \simeq \SL_2\times \SL_2,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676051.png" /></td> </tr></table>
| + | $$\Spin_5 \simeq \def\Sp{ {\rm Sp}}\Sp_4,\qquad \Spin_6 \simeq \SL_4.$$ |
| + | There is a linear representation $\def\th{\vartheta}\th$ of $\Spin_n$ in $V$ defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676052.png" /></td> </tr></table>
| + | $$\th(s)v = svs^{-1},\quad s\in\Spin_n,\; v\in V.$$ |
| + | If $\char k \ne 2$, |
| | | |
− | (see [[Symplectic group|Symplectic group]]), | + | $$\th(\Spin_n(Q)) = \O_n^+(Q) \textrm{ and } {\rm Ker}\;\th = \{\pm1\}.$$ |
| + | The group $\Spin_n$ has a faithful linear representation in $C^+$ (see |
| + | [[Spinor representation|Spinor representation]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676053.png" /></td> </tr></table>
| + | If $k=\R$ is the field of real numbers and $Q$ is positive (or negative) definite, then the group $\Spin_n(\R)$ of real points of the algebraic group $\Spin_n$ is sometimes also called a spinor group. This is a connected simply-connected compact Lie group which is a two-sheeted covering of the special orthogonal group $\SO_n(\R)$. The following isomorphisms hold: |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "The classical groups, their invariants and representations" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Cartan, "Leçons sur la théorie des spineurs" , '''2''' , Hermann (1938)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.M. Postnikov, "Lie groups and Lie algebras" , Moscow (1982) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> C. Chevalley, "Theory of Lie groups" , '''1''' , Princeton Univ. Press (1946)</TD></TR></table>
| |
| | | |
| + | $$\Spin_3(\R) \simeq \def\SU{ {\rm SU}}\SU_2,\qquad \Spin_4(\R) \simeq \SU_2\times \SU_2,$$ |
| | | |
| + | $$\Spin_5(\R) \simeq \Sp(0,2),\qquad \Spin_6(\R) \simeq \SU_4,$$ |
| | | |
− | ====Comments====
| + | where $\Sp(0,2)$ is the compact real form of $\Sp_4(\C)$ as described in |
− | See also [[Quadratic form|Quadratic form]].
| + | [[Symplectic group|Symplectic group]]. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676054.png" /> is the so-called even Clifford algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086760/s08676055.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre. Formes sesquilineares et formes quadratiques" , ''Eléments de mathématiques'' , Hermann (1959) pp. Chapt. 9</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Th. Bröcker, T. Tom Dieck, "Representations of compact Lie groups" , Springer (1985)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algèbre. Formes sesquilineares et formes quadratiques", ''Eléments de mathématiques'', Hermann (1959) pp. Chapt. 9 {{MR|0174550}} {{MR|0107661}} {{ZBL|}} |
| + | |- |
| + | |valign="top"|{{Ref|BrToDi}}||valign="top"| Th. Bröcker, T. Tom Dieck, "Representations of compact Lie groups", Springer (1985) {{MR|0781344}} {{ZBL|0581.22009}} |
| + | |- |
| + | |valign="top"|{{Ref|Ca}}||valign="top"| E. Cartan, "Leçons sur la théorie des spineurs", '''2''', Hermann (1938) {{MR|}} {{ZBL|0022.17101}} {{ZBL|0019.36301}} {{ZBL|64.1382.04}} |
| + | |- |
| + | |valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "Theory of Lie groups", '''1''', Princeton Univ. Press (1946) {{MR|0082628}} {{MR|0015396}} {{ZBL|0063.00842}} |
| + | |- |
| + | |valign="top"|{{Ref|Ch2}}||valign="top"| C. Chevalley, "The algebraic theory of spinors", Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} |
| + | |- |
| + | |valign="top"|{{Ref|Di}}||valign="top"| J.A. Dieudonné, "La géométrie des groupes classiques", Springer (1955) {{MR|}} {{ZBL|0221.20056}} |
| + | |- |
| + | |valign="top"|{{Ref|Po}}||valign="top"| M.M. Postnikov, "Lie groups and Lie algebras", Moscow (1982) (In Russian) {{MR|0905471}} {{ZBL|0597.22001}} |
| + | |- |
| + | |valign="top"|{{Ref|We}}||valign="top"| H. Weyl, "The classical groups, their invariants and representations", Princeton Univ. Press (1946) {{MR|0000255}} {{ZBL|1024.20502}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]
The spinor group or spin group is associated to
a non-degenerate quadratic form $Q$ on an $n$-dimensional vector space $V$ ($n\ge 3$) over a field $k$.
It is a connected
linear algebraic group which is the simply-connected covering of the irreducible component $\def\O{ {\rm O}}\O_n^+(Q)$ of the identity of the orthogonal group $\def\O{ {\rm O}}\O_n(Q)$ of the form $Q$. If $\def\char{ {\rm char}\;}\char k \ne 2$, then $\O_n^+(Q)$ coincides with the special orthogonal group $\def\SO{ {\rm SO}}\SO_n(Q)$. The spinor group is constructed in the following way. Let $C=C(Q)$ be the
Clifford algebra of the pair $(V,Q)$, let $C^+$ ($C^-$) be the subspace of $C$ generated by products of an even (odd) number of elements of $V$, and let $\def\b{\beta}\b$ be the canonical anti-automorphism of $C$ defined by the formula
$$\b(v_1v_2\dots v_n) = v_n\dots v_2v_1.$$
The inclusion $V\subset C$ enables one to define the Clifford group
$$G=\{s\in C : s \textrm{ is invertible in } C \textrm{ and } sVs^{-1} = V\}$$
and the even (or special) Clifford group
$$G^+ = G\cap C^+.$$
The spinor group $\def\Spin{ {\rm Spin}}\Spin = \Spin_n(Q) $ is defined by
$$\Spin_n = \{s\in G^+ : s\b s^{-1} = 1 \}.$$
The spinor group $\Spin_n$ is a quasi-simple (when $n\ne 4$), connected, simply-connected, linear algebraic group, of type $B_m$ when $n=2m+1$ and of type $D_m$ when $n=2m \ge 8$; if $n=6$ it is $A_3$ and if $n=4$ it is $A_1\times A_1$. The following isomorphisms hold:
$$\Spin_3\simeq \def\SL{ {\rm SL}}\SL_2,\qquad \Spin_2 \simeq \SL_2\times \SL_2,$$
$$\Spin_5 \simeq \def\Sp{ {\rm Sp}}\Sp_4,\qquad \Spin_6 \simeq \SL_4.$$
There is a linear representation $\def\th{\vartheta}\th$ of $\Spin_n$ in $V$ defined by
$$\th(s)v = svs^{-1},\quad s\in\Spin_n,\; v\in V.$$
If $\char k \ne 2$,
$$\th(\Spin_n(Q)) = \O_n^+(Q) \textrm{ and } {\rm Ker}\;\th = \{\pm1\}.$$
The group $\Spin_n$ has a faithful linear representation in $C^+$ (see
Spinor representation).
If $k=\R$ is the field of real numbers and $Q$ is positive (or negative) definite, then the group $\Spin_n(\R)$ of real points of the algebraic group $\Spin_n$ is sometimes also called a spinor group. This is a connected simply-connected compact Lie group which is a two-sheeted covering of the special orthogonal group $\SO_n(\R)$. The following isomorphisms hold:
$$\Spin_3(\R) \simeq \def\SU{ {\rm SU}}\SU_2,\qquad \Spin_4(\R) \simeq \SU_2\times \SU_2,$$
$$\Spin_5(\R) \simeq \Sp(0,2),\qquad \Spin_6(\R) \simeq \SU_4,$$
where $\Sp(0,2)$ is the compact real form of $\Sp_4(\C)$ as described in
Symplectic group.
References
[Bo] |
N. Bourbaki, "Algèbre. Formes sesquilineares et formes quadratiques", Eléments de mathématiques, Hermann (1959) pp. Chapt. 9 MR0174550 MR0107661
|
[BrToDi] |
Th. Bröcker, T. Tom Dieck, "Representations of compact Lie groups", Springer (1985) MR0781344 Zbl 0581.22009
|
[Ca] |
E. Cartan, "Leçons sur la théorie des spineurs", 2, Hermann (1938) Zbl 0022.17101 Zbl 0019.36301 Zbl 64.1382.04
|
[Ch] |
C. Chevalley, "Theory of Lie groups", 1, Princeton Univ. Press (1946) MR0082628 MR0015396 Zbl 0063.00842
|
[Ch2] |
C. Chevalley, "The algebraic theory of spinors", Columbia Univ. Press (1954) MR0060497 Zbl 0057.25901
|
[Di] |
J.A. Dieudonné, "La géométrie des groupes classiques", Springer (1955) Zbl 0221.20056
|
[Po] |
M.M. Postnikov, "Lie groups and Lie algebras", Moscow (1982) (In Russian) MR0905471 Zbl 0597.22001
|
[We] |
H. Weyl, "The classical groups, their invariants and representations", Princeton Univ. Press (1946) MR0000255 Zbl 1024.20502
|