Namespaces
Variants
Actions

Difference between revisions of "Cauchy matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0209301.png
 +
$#A+1 = 5 n = 0
 +
$#C+1 = 5 : ~/encyclopedia/old_files/data/C020/C.0200930 Cauchy matrix
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a linear system of ordinary differential equations''
 
''of a linear system of ordinary differential equations''
  
The matrix defining the [[Cauchy operator|Cauchy operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020930/c0209301.png" /> of the system relative to some basis of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020930/c0209302.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020930/c0209303.png" />) independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020930/c0209304.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020930/c0209305.png" />.
+
The matrix defining the [[Cauchy operator|Cauchy operator]] $  X ( \theta , \tau ) $
 +
of the system relative to some basis of the space $  \mathbf R  ^ {n} $(
 +
or $  \mathbf C  ^ {n} $)  
 +
independent of $  \theta $
 +
and $  \tau $.

Latest revision as of 15:35, 4 June 2020


of a linear system of ordinary differential equations

The matrix defining the Cauchy operator $ X ( \theta , \tau ) $ of the system relative to some basis of the space $ \mathbf R ^ {n} $( or $ \mathbf C ^ {n} $) independent of $ \theta $ and $ \tau $.

How to Cite This Entry:
Cauchy matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_matrix&oldid=18445
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article